[過去ログ] スレタイ 箱入り無数目を語る部屋20 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1(29): 2024/07/06(土)07:46 ID:BXv5KF7Y(1/14) AAS
前スレが1000近く又は1000超えになったので、新スレを立てる
(”ヘンテコスレ”が別にあります 2chスレ:math 箱入り無数目を語る部屋19 )
2chスレ:math
前スレ スレタイ 箱入り無数目を語る部屋19
(参考)時枝記事
外部リンク:imgur.com
数学セミナー201511月号「箱入り無数目」
省27
6(1): 2024/07/06(土)07:50 ID:BXv5KF7Y(6/14) AAS
つづき
(完全勝利宣言!w)(^^
2chスレ:math (775の修正を追加済み)
>>701-702 補足説明
>>760にも書いたが、
” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701
をベースに、時枝記事>>1のトリックを、うまく説明できると思う
省26
93(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/10(水)22:20 ID:4Azg/PUN(1/2) AAS
>>83-87
ふっふ、ほっほ ;p)
1)大学学部レベルの現代数学は、抽象化されていてそのカバーする範囲は広い
2)さて >>82で示したのは、単純に
・可算無限個の箱に
・サイコロ一つの目を、順に入れていく
・当然、どの箱も同じで、互いに独立(つまり、独立同分布(IID))
省11
100(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/11(木)07:09 ID:1M29YPsb(2/3) AAS
ふっふ、ほっほ ;p)
1)大学学部レベルの現代数学は、抽象化されていてそのカバーする範囲は広い
2)さて >>82で示したのは、単純に
・可算無限個の箱に
・サイコロ一つの目を、順に入れていく
・当然、どの箱も同じで、互いに独立(つまり、独立同分布(IID))
・そうすると、どの箱の中の数も、箱を開けずに的中できる確率は1/6に決まる
省10
102(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/11(木)21:39 ID:1M29YPsb(3/3) AAS
ふっふ、ほっほ ;p)
1)大学学部レベルの現代数学は、抽象化されていてそのカバーする範囲は広い
2)さて >>82で示したのは、単純に
・可算無限個の箱に
・サイコロ一つの目を、順に入れていく
・当然、どの箱も同じで、互いに独立(つまり、独立同分布(IID))
・そうすると、どの箱の中の数も、箱を開けずに的中できる確率は1/6に決まる
省10
107(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/12(金)11:26 ID:kxYSw3ja(1/5) AAS
ふっふ、ほっほ ;p)
妄想に取りつかれているのは、あなたがたです
「可算無限個の箱に サイコロ一つの目を 順に入れていく
一つを残して、他の箱を開けても 残った箱にはなんの影響もない
残った箱のサイコロの出目の確率は1/6」
これを裏付けるのが、現代数学の確率論の結論(重川、原隆>>82)
他の箱を開けても、確率P=99/100には なりようがない
省17
136(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/13(土)08:13 ID:JlPaxlSt(1/8) AAS
スレ主です
バトル中悪いが、お邪魔します
>>122
(引用開始)
これ
「どちらから着手しても1目にもならない、価値のない着点。」
の意味でのダメ
省29
140(1): 2024/07/13(土)08:56 ID:MGEPPaNU(3/18) AAS
>>136
>箱入り無数目では、>>1より「どんな実数を入れるかはまったく自由」
> 「もちろんでたらめだって構わない」とあるよ
> 即ち、でたらめ→ランダム と読み替えれば、
任意とランダムを混同するアホに箱入り無数目は無理
145(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/13(土)10:55 ID:JlPaxlSt(4/8) AAS
>>143
>>『任意の一つの出題』?なんのこっちゃ
>>『任意の出題』との違いを説明せよ
>同じ 出題された時点で1つに定まる
ふっふ、ほっほ
>>1 箱入り無数目より
『もちろんでたらめだって構わない.そして箱をみな閉じる.
省5
147(1): 2024/07/13(土)12:44 ID:MGEPPaNU(6/18) AAS
>>144
>1)”でたらめ”下記 goo辞書 語源は 《さいころを振って、出たその目のままにする意》らしい
> とすれば、でたらめ→ランダム が正しいよ
とすればの前後がつながらない。
さいころを振って出た目は定数。
どの目も確率1/6で出ることをランダムと言う。
基本から分かってない。
151(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/13(土)16:28 ID:JlPaxlSt(5/8) AAS
>>147
(引用開始)
>1)”でたらめ”下記 goo辞書 語源は 《さいころを振って、出たその目のままにする意》らしい
> とすれば、でたらめ→ランダム が正しいよ
とすればの前後がつながらない。
さいころを振って出た目は定数。
どの目も確率1/6で出ることをランダムと言う。
省22
221(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/14(日)07:18 ID:BJLc2ubv(2/8) AAS
>>178
(引用開始)
>2)つまり”確率変数として扱わねばならない理由はない”が
じゃダメ
> その実 常識であり、かつ 「確率変数X1,X2,・・,Xn・・として扱う」ことができる
> かつ、どこにでも書いてある。下記の 重川、原隆は代表例として示しただけだ
> 世界中の何千、何万の確率論の教科書に載っている
省29
236(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/14(日)13:11 ID:BJLc2ubv(5/8) AAS
>>233-234
>確率の公理から「箱の中身を確率変数とせねばならない」なんて結論はでてこないというだけ
>列選択を確率変数にすれば勝てるという主張に対し
>箱の中身を確率変数にすれば勝てないと反論するのは詭弁に他ならない
ふっふ、ほっほ
1)>>1の「箱入り無数目」より
『片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.』
省32
275(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/15(月)12:40 ID:bSg/nb6z(3/4) AAS
>>274
>出題列は任意だよ ランダムじゃないよ バカ?
ふっふ、ほっほ
下記の通り『まったく自由』『もちろんでたらめだって構わない』だ
”まったく自由”&”でたらめ”は、ランダムを含意するよ
しらなかったんだwww ;p)
>>1より
省4
276(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/15(月)12:49 ID:bSg/nb6z(4/4) AAS
>>273
>なんで数列の極限が出てくるの?
>一つの出題列の決定番号は一つなのに
ふっふ、ほっほ
下記の通り『まったく自由』『もちろんでたらめだって構わない』だ
なので、”一つの出題列の決定番号は一つ”であっても、いろんな場合を考える必要が
あるってことだね。ある特定の一つの出題しか解けないのかな?
省13
410(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/18(木)09:51 ID:VS/wVAHV(1) AAS
詭弁は、よし子さん ;p)
(>>349より再録)
ふっふ、ほっほ
箱に順にサイコロの出目を入れる出題を
「箱入り無数目」の出題ルールとして、許しているとする
(>>1より「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい.
省26
413(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/19(金)10:41 ID:dBPg3FNz(1) AAS
詭弁は、よし子さん ;p)
それしか言えないの?
(>>349より再録)
ふっふ、ほっほ
箱に順にサイコロの出目を入れる出題を
「箱入り無数目」の出題ルールとして、許しているとする
(>>1より「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
省27
426(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/20(土)10:45 ID:jRotbru4(4/7) AAS
>>422-423
ふっふ、ほっほ
詭弁は、よし子さん ;p)
それしか言えないの?
(>>349より再録)
ふっふ、ほっほ
箱に順にサイコロの出目を入れる出題を
省29
472(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/22(月)17:55 ID:+A91SM8Q(4/4) AAS
>>471
>話は逆。
>箱入り無数目が成立することは証明されています。不成立だと言うなら証明の誤りを示してください。
ふっふ、ほっほ
あなた、数学のセンスないですね
数学科出身を名乗らない方が良いと思いますよ
>>463より再録
省28
474(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/22(月)23:43 ID:rVHeaPpH(4/4) AAS
>>473
ふっふ、ほっほ
あなた、数学のセンスないですね
数学科出身を名乗らない方が良いと思いますよ
>>463より再録
詰んでいる
1)いま問題にしているのは、”箱入り無数目戦略に きちんとした数学的裏付けがあるかどうか?”
省36
537(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/29(月)11:02 ID:OpNuS8gZ(1/2) AAS
>>534-535
>一度作ったあみだくじ(100本のうち1本はずれ)を使いまわす
>100本から1本選ぶあみだくじの全て(100!種)のうち
>例えば1番目が外れのくじを数えるとかいう話ではない
>例えば46番目がはずれのくじに対して
>46番目を選ぶ確率がどれだけか?という話
>で、ランダムで選ぶと決めた瞬間に1/100に決まる
省21
541(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/07/29(月)11:56 ID:OpNuS8gZ(2/2) AAS
ふっふ、ほっほ
再録します(>>537) ;p)
>>534-535
>一度作ったあみだくじ(100本のうち1本はずれ)を使いまわす
>100本から1本選ぶあみだくじの全て(100!種)のうち
>例えば1番目が外れのくじを数えるとかいう話ではない
>例えば46番目がはずれのくじに対して
省23
558: 2024/08/02(金)21:08 ID:842/s6YR(2/2) AAS
>>552
>1)毎回出題を変える
>2)毎回同じ出題(箱は選びなおせる)
ふっふ、ほっほ
>>1より 箱入り無数目で
『最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
省17
559(2): 2024/08/03(土)07:10 ID:naA84B0d(1/10) AAS
>もし"2)毎回同じ出題(箱は選びなおせる)"としよう
>1回目で、k番目の箱を残して、k番目以外の箱を開ける 中の数を記録する
それ 禁止
>その後、2回目で、残るk番目の箱は開ける。その数を記録する
>(これで、全ての箱の数が分ることになる)
それ 禁止
>そして、3回目以降ではで、全ての箱はすでに開いたので全部記録がある。
省11
588: 2024/08/04(日)15:46 ID:IsmqY6aU(2/2) AAS
「ここは5ちゃん 何でもアリ ウソの責任クソくらえ」
「無限小数が無い世界なら0.99999……≠1だよね?」
発言で有名な自分では演習して見せられないコピペ解説専門で
それで理解を深めた宣言のSetA爺>>1の肩を持ってるコイツは何者なんだ?
何だって数学板三大バカの中でも最も恥知らず王のSetA爺の肩を持ってるんだ?
SetA爺の肩を持つなんて、消え入りたくならないのかね?
589: 2024/08/04(日)16:05 ID:MRMarsEu(5/7) AAS
>SetA爺>>1の肩を持ってるコイツ
って誰?
サボらず具体的にID書かないとダメだよ
761(2): 2024/08/12(月)08:19 ID:8g0q5vm4(1/9) AAS
>>760
それが精一杯なの?
君の論法が破綻していることを、箱入り無数目>>1に従って示すよw ;p)
1)Aさんが、可算無限個の箱の列に任意の好きな実数を入れて箱を閉じた
別のBさんが来て、もう1列 別の可算無限個の箱の列を作って好きな実数を入れた
2)さて、Bさんは 箱入り無数目の手順>>1に従い
自分の作った可算無限個の箱の数列のしっぽ同値類を知り
省20
770(1): Mara Papiyas 2024/08/12(月)14:24 ID:KA8bFPFY(5/7) AAS
>>767
>卑近な例として、1,2,3を考えよう
>1=金メダル、2=銀メダル、3=銅メダル (オリンピック)
>となれば、大変なこと
>一方
>1=一位、2=二位、3=三位 (国内大会)
>ならば、オリンピックのメダルとは比べものにならない
省22
785(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2024/08/12(月)22:38 ID:8g0q5vm4(9/9) AAS
>>784
ふっふ、ほっほ
>>それ、>>758の 数学B 第3章 1.1 確率変数とは
>>および 発展的補足 確率変数について深く理解する
>>を百回音読してね
>何回音読しても「定数は確率変数である」とは書かれていない
・サイコロ一つが振られて、箱の中にある
省23
802: キジバト(本物) 2024/08/13(火)15:56 ID:yoQtFmUo(10/11) AAS
>>801
>記事の丸写し
ちがうよ >>760は記事とは異なる
ドバト君が誤読するから、誤読しようがない形に書き換えた
まず>>1-3に書かれた記事を読んで、比べてごらん
話はそれから
>ど素人
省6
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.051s