[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
218
(3): 2022/10/29(土)07:35 ID:TJ1yzMer(1/16) AAS
>>183-184
>出題者側が箱の中の実数を確率変数にしたっていいじゃないか

それは違うよ
「箱の中の実数を、確率変数として扱う」(下記 渡辺澄夫 東工大)ってことです

外部リンク[html]:watanabe-www.math.dis.titech.ac.jp 渡辺澄夫 東工大
外部リンク[html]:watanabe-www.math.dis.titech.ac.jp
確率変数
省6
219
(4): 2022/10/29(土)07:46 ID:TJ1yzMer(2/16) AAS
そもそも論に戻ろう
 時枝>>1
”どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
 もちろんでたらめだって構わない.そして箱をみな閉じる.”

1)区間[-∞、+∞]の実数を、ピンポイントで的中させる?
 それが、どれだけ破天荒なことか?
2)確率論で、r∈Rの実数の確率は、
省10
220
(11): 2022/10/29(土)08:23 ID:TJ1yzMer(3/16) AAS
>>217
>改めて懐疑派・否定派に>>101を問う

1)反例が存在するよ
2)>>104に書いたが、現代数学の確率論では
 可算無限個の確率変数族 X1,・・,Xn ,・・
 を扱うことができる
3)サイコロの目を箱に入れると、
省33
227
(1): 2022/10/29(土)11:31 ID:TJ1yzMer(4/16) AAS
>>221-226

大学レベルの確率論
分かってないやつが
何を言っても
説得力ないわなww
236
(7): 2022/10/29(土)15:46 ID:TJ1yzMer(5/16) AAS
>>220 補足
> 決定番号は、多項式環の多項式の次数+1と解せられる>>161
> 時枝 >>1 でダメなのは、決定番号が非正則分布>>28になっていること
> そこが、時枝記事のトリックのキモです

<補足>
これについては、>>32-35に書いてあるが
さらに、掘り下げようと思う
省17
237
(3): 2022/10/29(土)15:47 ID:TJ1yzMer(6/16) AAS
>>236
つづき

最後に気を付けるべき点は、ユークリッド空間は技術的にはベクトル空間ではなくて、(ベクトル空間が作用する)アフィン空間と考えなければいけないことである。直観的には、この差異はユークリッド空間には原点の位置を標準的に決めることはできない(平行移動でどこへでも動かせるため)ことをいうものである。大抵の場合においては、この差異を無視してもそれほど問題を生じることはないであろう。

厳密な定義
いったん直交座標系が固定されると、n-次元ユークリッド空間 (S, V) は n-次元の標準的ユークリッド空間 (Rn, Rn) と同一視することができるので、ユークリッド空間といったら標準的ユークリッド空間のことを指す場合も多い。

なお、n-次元ユークリッド空間の定義において、「実内積空間」を「実ベクトル空間」に置き換えて得られる空間を n-次元アフィン空間と呼ぶ。ユークリッド空間は計量(内積)をもった特別なアフィン空間であるということができる。計量をもたないアフィン空間においては、二点間の距離や線分のなす角などは定義されないが、ユークリッド空間においてはこれらの概念を以下に述べる仕方で定義することができる。

現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば Rn とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で En と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。
省3
238
(4): 2022/10/29(土)15:48 ID:TJ1yzMer(7/16) AAS
>>237
つづき

外部リンク:ja.wikipedia.org
基底 (線型代数学)

任意のベクトル空間は基底を持つ(このことの証明には選択公理が必要である)。一つのベクトル空間では、全ての基底が同じ濃度(元の個数)を持ち、その濃度をそのベクトル空間の次元と呼ぶ。この事実は次元定理と呼ばれる(証明には、選択公理のきわめて弱い形である超フィルター補題が必要である)。

順序基底と座標系
V は体 F 上の n-次元ベクトル空間であるものとする。V の順序基底を一つ選ぶことは、数ベクトル空間 Fn (座標全体のなすベクトル空間と考えられる)から V への線型同型写像 φ を一つ選ぶことと等価である。これを見るのに Fn の標準基底が順序基底であることが利用できる。
省6
239
(5): 2022/10/29(土)15:49 ID:TJ1yzMer(8/16) AAS
>>238

つづき

無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。実際、有限次元空間は定義により有限な基底を持つし、また完備でない無限次元ノルム空間で可算なハメル基底を持つものが存在する。


フーリエ級数論において、

当該函数系の「無限線型結合」として表される。しかし殆どの自乗可積分函数はこれら基底函数の有限線型結合としては表すことができず、したがってこの「基底」はハメル基底には「ならない」。この空間の任意のハメル基底は、この可算無限にすぎない「基底」よりもはるかに大きいのである(ハメル基底は連続の濃度をもつ[13])。この種の空間のハメル基底は典型的に有用でなく、一方でこれらの空間の正規直交基底はフーリエ解析において本質的である。
省3
240
(2): 2022/10/29(土)15:49 ID:TJ1yzMer(9/16) AAS
>>239
つづき

外部リンク:ja.wikipedia.org
ヒルベルト空間
正則関数の空間
ハーディ空間
複素解析や調和解析で用いられるハーディ空間は、その元が複素領域上の正則関数となっているような関数空間の一種である[26]。
省11
252
(2): 2022/10/29(土)20:02 ID:TJ1yzMer(10/16) AAS
>>243-244
>∪R^n(n∈N)  ⊂ l2 ⊂ R^N

"∪R^n(n∈N)  ⊂ l2"が違うだろ
∪R^n(n∈N) は、完備でない無限次元線形空間で可算なハメル基底を持つもの>>239 とする

つまり、これは
”多項式環 F[x]:任意の自然数より大きい次元の部分空間を持つから無限次元である(都築 暢夫 広島大)”>>32
”多項式空間 K[x] や形式的冪級数の空間 K[[x]] は無限次元.”柳田伸太郎 名古屋大学 >>33
省12
253: 2022/10/29(土)20:02 ID:TJ1yzMer(11/16) AAS
>>252
つづき

l^p-空間
詳細は「ルベーグ空間」を参照
K^N の部分空間 l^p を


外部リンク:ja.wikipedia.org^p%E7%A9%BA%E9%96%93
省10
254: 2022/10/29(土)20:05 ID:TJ1yzMer(12/16) AAS
>>252 追加
>"∪R^n(n∈N)  ⊂ l2"が違うだろ

この人は
∪R^n(n∈N)
つまり
可能無限たる
多項式環 F[x]((都築 暢夫 広島大)>>32
省2
258
(2): 2022/10/29(土)21:21 ID:TJ1yzMer(13/16) AAS
>>257
>外部リンク[pdf]:www.ma.huji.ac.il Theorem 1 の証明で間違っているのは
>どのセンテンスのどの文ですか?
>間違っている文の中で最初のもの挙げてください

反例を示した>>220
従って、証明がどこで間違ったか?

それは、証明を書いた人が考えれば良いことだよ
省1
260
(4): 2022/10/29(土)21:49 ID:TJ1yzMer(14/16) AAS
>>255-256
やれやれ
現代数学の確率論を
全然理解していないね

>>一方で、スレ主によれば、回答者の勝率はゼロだという

そんなことは言ってないぞ!w
 >>220に書いた通りです
省27
261
(5): 2022/10/29(土)21:57 ID:TJ1yzMer(15/16) AAS
>>259
>あなたには証明の間違いを指摘できないということですね

なんども指摘している
決定番号を使った確率計算をしている
しかし、決定番号は非正則分布を成すので
時枝やSergiu Hart氏の確率計算 99/100は
正当化できないってことですよ!
省5
266
(2): 2022/10/29(土)23:32 ID:TJ1yzMer(16/16) AAS
>>236 補足の続き

1)非正則分布とは?
 >>13の通り 確率の和(積分)が1ではない
 つまり、全事象が無限大に発散して、全事象を1とすることができない
(コルモゴロフの確率公理を満たすことができない分布のこと)
2)要するに、非正則分布は、例えば、一様分布の範囲を無限に広げた分布である(一様事前分布)>>28
 範囲が無限であっても、正規分布のように、指数関数的に減衰する場合は、積分は発散せず、正当に扱える
省23
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s