[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
1(8): 02/01(土)08:43 ID:lDxwqd7y(1/16) AAS
前スレが1000近く又は1000超えになったので、新スレを立てる
2chスレ:math
前スレ ガロア第一論文と乗数イデアル他関連資料スレ12
このスレは、ガロア第一論文と乗数イデアル他関連資料スレです
関連は、だいたい何でもありです(現代ガロア理論&乗数イデアル関連他文学論・囲碁将棋まであります)
資料としては、まずはこれ
外部リンク:sites.google.com
省18
2(3): 02/01(土)08:44 ID:lDxwqd7y(2/16) AAS
つづき
メモ
外部リンク[html]:www.iwanami.co.jp
岩波科学ライブラリー
ガロアの論文を読んでみた
時代を超越していたガロアの第1論文.その行間を補いつつ,高校数学をベースにじっくりと読み解く.
画像リンク[jpg]:www.iwanami.co.jp
省25
3(4): 02/01(土)08:44 ID:lDxwqd7y(3/16) AAS
つづき
メモ (デデキントのガロア理論講義の話が興味深い)
外部リンク:www.jstage.jst.go.jp
ガロア理論の推移史について
中村幸四郎*
科学基礎論研究1982
この論文は多くの後継者を経て,後に「ガロア理論」
省22
4: 02/01(土)08:44 ID:lDxwqd7y(4/16) AAS
つづき
外部リンク:www.jstage.jst.go.jp
論説 数学 (1981年9月14日提出)*1981年4月5日京都大学における第9回日本数学会彌永賞受賞講演
ソリトン方程式とKac-Moodyリー環 柏原 正樹*神保 道夫 伊達 悦朗 三輪 哲二
§1.序
代数方程式の研究に,解の変換群の概念を導入し,その有効性を示したのはGaloisである.こ
のGaloisの視点を,微分方程式に適用する試みの中から,リー群,リー環の概念は生まれた.線
省33
5: 02/01(土)08:47 ID:lDxwqd7y(5/16) AAS
つづき
2はじめに
このノートでは、最近得られた対数的標準対に対する非消滅定理を解説する。この非消滅定理は、対数的標準対に対する固定点自由化定理と同値であることが示される。
今回の非消滅定理の一番のポイントは、その定式化である。
数学的な内容は固定点自由化定理と同値であるが、非消滅定理として正しく定式化することにより、極小モデル理論の基本定理たちの証明に劇的な簡略化をもたらした
3おわび
80年代前半から現在にいたるまで、極小モデル理論研究の最も重要でよく使われるテクニックは川又–Viehweg消滅定理である。80年代後半から、乗数イデアル層の考え方が持ち込まれ、Nadel型の消滅定理をつかうことも非常に有効であることが分かって来た。いずれにせよ、すべて川又–Viehweg消滅定理の応用として扱うことが出来る話である。今回の一連の発展は、その川又–Viehweg消滅定理の部分を一般化し、新しい道具で極小モデル理論を考え直した、ということである。
省13
6: 02/01(土)08:47 ID:lDxwqd7y(6/16) AAS
つづき
10おまけ:個人的な考え
ここでは、80年代から現在にいたるまで極小モデル理論で重要な位置を占めているX-論法と、最近の新しい議論について個人的な意見を少し書いてみたい。通常の論文などには書かない個人的な印象である。あくまで私の考えである。X-論法の最もすばらしい点は、その強力さにあると思う。広中の特異点解消定理と係数を揺するという小細工をつかうことにより、様々な結果を川又–Viehweg消滅定理の応用として示すことが出来るのである。
最後に少しネタをばらしておく。[F1]と[F2]で対数的標準対に対する評価付きの固定点自由性の問題を扱った。これらは川又対数的末端対に対する結果の完全な焼き直しである。数学的には大した結果ではないと思う。[F1]と[F2]はKoll´ar氏やAngehrn氏とSiu氏の議論の手直しに過ぎない。ただし、[F1]と[F2]での試行錯誤が今回の[F6]につながったので、そういう意味では[F1]と[F2]は私にとっては非常に価値があった。結局のところ、やっぱりいろいろやってみないとダメだな、と改めて思った。以上。
藤野修先生は、令和5年 大阪科学賞を受賞されています
おめでとうございます
(参考)
省20
7(25): 02/01(土)08:48 ID:lDxwqd7y(7/16) AAS
つづき
数学者の日常
小平の消滅定理の一般化
ホッジ構造
非特異射影多様体のコホモロジーにはホッジ構造と呼ばれる構造が入ります。これは純ホッジ構造と呼ばれるものになっています。一般の代数多様体のコホモロジーには純ホッジ構造は入らないのですが、混合ホッジ構造と呼ばれる純ホッジ構造を拡張したものが入ります。
(引用終り)
以上
省26
8(27): 02/01(土)08:49 ID:lDxwqd7y(8/16) AAS
つづき
再録します。おサルの傷口に塩ですw
2chスレ:math
2023/06/11(日)
下記だねw(>>63再録)
スレ主です
数学科オチコボレのサルさんw 2chスレ:math
省37
9(25): 02/01(土)08:50 ID:lDxwqd7y(9/16) AAS
つづき
あほサルの続き
さて
『なぜ、ZFC公理まで遡らなくても数学が出来るの?』スレより
itest.5ch.net/rio2016/test/read.cgi/math/1731415731/771
2024/12/21
おサルさん
省29
10(31): 02/01(土)08:50 ID:lDxwqd7y(10/16) AAS
つづき
・自然数 ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
『形式的な定義 自然数の公理
以上の構成(注 ノイマン構成)は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
省28
11: 02/01(土)11:09 ID:YIkJbYsl(1/11) AAS
>>10
{}∈{{{}}} は偽
{{{}}}の元は{{}}のみだから
分からなければ中学数学からやり直そう
12: 02/01(土)11:15 ID:YIkJbYsl(2/11) AAS
>>10
>列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・を、順序関係<に置き換えて
>{}<{{}}<{{{}}}<{{{{}}}}<・・・ として、整列集合と考えることができる
大間違い
整列順序どころかそもそも順序でない
なぜなら {}∈{{{}}} は偽のため順序の要件である推移律を満たさないから
定義を確認せず独りよがりに妄想するから間違える
13: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)17:52 ID:lDxwqd7y(11/16) AAS
alg-d 壱大整域氏
動画解説
”【順序数入門3】順序数を使った証明の例:Zornの補題”
貼ります
alg-d.com/math/ac/
alg-d 壱大整域
トップ > 数学 > 選択公理
省10
14(13): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)17:57 ID:lDxwqd7y(12/16) AAS
前スレ 再録
rio2016.5ch.net/test/read.cgi/math/1735693028/907
いつもお世話になっている
alg-d 壱大整域氏
選択公理→ (整列可能定理)
これ分かり易いかも
”写像 g:λ→X∪{∞} を
省37
15(8): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)18:17 ID:lDxwqd7y(13/16) AAS
前スレより 再録
rio2016.5ch.net/test/read.cgi/math/1735693028/913
alg-d 壱大整域氏 >>907の
証明 (1 ⇒ 2) の本質は
Xの冪集合 P(X)\{ ∅ } に 選択公理の選択関数 を適用すると
それが 如何なる 選択関数を採用したとしても
”写像 g:λ→X∪{∞} を
省29
16: 02/01(土)18:28 ID:YIkJbYsl(3/11) AAS
>>14
>なる g を 導入しているんだ
>で、写像 g の全単射を 言う
>なるほどね
いやそれ、Jechの証明のaα、つまりAの元への順序数による附番と同じことを違う言い方で言ってるだけだから
君Jechの証明を全然分かってなかったんだね
17(3): 02/01(土)18:30 ID:YIkJbYsl(4/11) AAS
>>14
で、以下はいつ答えるの?
まさか分かってないのに分かってるふりしてたの?
(引用開始)
>順序数は、整列順序であるから
>Aに整列順序が導入できた
順序数の通常の大小関係が整列順序だとなぜAに整列順序が導入できたことになるか分かる?
省1
18: 02/01(土)18:32 ID:YIkJbYsl(5/11) AAS
>>15
>簡単に補足する
分かってない人が補足しなくていいから
19: 02/01(土)18:38 ID:YIkJbYsl(6/11) AAS
>>15
>で、Xから任意の元を取った 集合、 必ず 3元の集合が存在し
>その ある3元の集合から 任意の元を取った 集合、 必ず 2元の集合が存在し
>その ある2元の集合から 任意の元を取った 集合、 必ず 1元の集合が存在し
>という構造を、べき集合が有している
自明。
Xの冪集合とはXの部分集合全体の集合なんだから。構造を有するもクソも無い。
省1
20: 02/01(土)18:48 ID:YIkJbYsl(7/11) AAS
>>15
どうでもいいけど、旧スレまだ残ってんのに逃げるように新スレに投稿すんのやめない?
21(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)19:16 ID:lDxwqd7y(14/16) AAS
>>15 さらに補足
この説明で分るように
X から最初に選ぶ元
その残りから 次に選ぶ元
その残りから 次に選ぶ元
・
・
省4
22(1): 02/01(土)19:43 ID:YIkJbYsl(8/11) AAS
>>21
>Xの元を すきな順番に整列できる
大間違い。
順番は選択関数で一意に定まる。
>X から最初に選ぶ元
>その残りから 次に選ぶ元
>その残りから 次に選ぶ元
省6
23(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)19:46 ID:lDxwqd7y(15/16) AAS
AA省
24: 02/01(土)20:01 ID:YIkJbYsl(9/11) AAS
>>23
足し算が分かった小学生みたいにはしゃぐなよ
25: 02/01(土)20:05 ID:YIkJbYsl(10/11) AAS
>>23
はしゃぎたい気持ちは分かるが>>17にはいつ答えるの?
これに答えないと分かったとは言えないぞ はしゃぐのはまだ早い
26(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)20:06 ID:lDxwqd7y(16/16) AAS
”<公開処刑 続く>
(『 ZF上で実数は どこまで定義可能なのか?』に向けて と
(あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”]
『 ZF上で実数は どこまで定義可能なのか?』の前に
Zornの補題 をやります ;p)
まず、ここから
(参考)>>14より 再録
省16
27: 02/01(土)20:06 ID:YIkJbYsl(11/11) AAS
あと任意の選択関数ではダメな命題の例を早く答えてね
28(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)11:23 ID:5scbwZz/(1/12) AAS
AA省
29: 02/02(日)12:17 ID:7z4Dw9JT(1/18) AAS
AA省
30: 02/02(日)12:17 ID:7z4Dw9JT(2/18) AAS
>その後に残ったものに 整列可能定理を適用する
整列定理は整列順序の存在しか主張していない。「好きな順序で整列できる」は妄想。
>3)さて、上記2)で そもそも 整列可能定理とは
> 最後が空集合になるまで繰り返して良いとするものだった
整列定理の証明において元に対する順序数による附番aαを再帰的に定義している。
このaαの定義で選択関数を使っている。だからこの附番のしかたは選択関数で一意に定まる。
「勝手な附番を無限回繰り返して良い」は妄想。
31: 02/02(日)12:18 ID:7z4Dw9JT(3/18) AAS
> なので、整列可能定理における ”お好きなように”は、選択公理(選択関数)でも同じ
意味不明。なにその”お好きなように”って?
おまえは自分の主張すらまともに書けないのでエスパーすると as desired を誤読してるだけ。望み通り整列順序が得られるという意味だ。中学英語からやり直せ。
>余談だが、”Take your choice”(好きなものを取りなさい)goo辞書
>choice には、お好きなように という意味がある
「選択公理 axiom of choice:好き勝手に選択してよい」という連想ゲームは不成立。
君、連想ゲーム好きやね。だから間違える。
32: 02/02(日)12:18 ID:7z4Dw9JT(4/18) AAS
>なお、存在のみで 具体的でない場合も可
>例えば、実数Rの整列では、分るところのみを お好みにして、残りの 不明部分は 存在のみの公理任せも可!w ;p)
上に書いた通り無意味。
><反証>
以上、なんの反証にもなっていない。残念!
33(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)12:26 ID:5scbwZz/(2/12) AAS
>>28
(引用開始)
>Xの元を すきな順番に整列できる
大間違い。
順番は選択関数で一意に定まる。
(引用終り)
典型的な、大学数学 オチコボレさんのパターンか? ;p)
省54
34(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)12:50 ID:5scbwZz/(3/12) AAS
>>33補足
>>28
(引用開始)
>Xの元を すきな順番に整列できる
大間違い。
順番は選択関数で一意に定まる。
(引用終り)
省23
35: 02/02(日)13:04 ID:7z4Dw9JT(5/18) AAS
>>33
>彼のいう MM mathematical maturity 数学的成熟度 が、低いね
君の独善持論「好きな順序で整列できる」は間違いだから成熟度以前。
>”選択関数”の 理解が 上滑りだよ
君は上滑り以前に理解できていない。
>だから、箱入り無数目で 御大が 指摘する 数学の事項が
>全く理解できないんだよね、あなたは!www
省5
36: 02/02(日)13:24 ID:7z4Dw9JT(6/18) AAS
>>34
>『整列可能定理 とは, 次の命題のことに他ならない.
>(W) いかなる集合も、その上に適当に関係≦を定義して,整列集合にすることが出来る』
>これで すきな順番に → 適当に関係≦を定義して
>と書き換えれば、赤 摂也の 整列可能定理になる
論理記号で書けば∀≦ではなく∃≦だから、その書き換えは大間違い。
∀と∃を取り違えるようでは大学一年の4月に落ちこぼれたのも当然の結果。
省3
37(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)18:25 ID:5scbwZz/(4/12) AAS
>>34 補足
下記の ツォルン(Zorn)の補題 → ツェルメロ(Zermelo)の整列定理の証明
ここでも、空集合以外の部分集合の順序構造を使う(詳しくは下記ご参照)
直感的には、>>15で示した 例示 ミニモデルで 集合X={a,b,c,d} で
冪集合 P(X)={ {a,b,c,d},
{a,b,c},{a,b,d},{a,c,d},{b,c,d}
{a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d},
省46
38: 02/02(日)18:42 ID:7z4Dw9JT(7/18) AAS
コピペが趣味なんですか? 楽しいですか?
39(1): 02/02(日)19:10 ID:eC5TmypE(1/2) AAS
2chスレ:math
>>21
>Xの元を すきな順番に整列できる
P(X)-{φ}からその要素を選択する選択関数をどう決めるか次第でね
ただ選択関数を決めてしまったら順番は一意だけど
>>33
>>順番は選択関数で一意に定まる。
省3
40(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)19:15 ID:5scbwZz/(5/12) AAS
>>37
ふっふ、ほっほ
コピペ は、シールド 盾
突っかかるやつへの対抗ですよw ;p)
特に、大学のテキストPDFのシールドに たまに突っ込む人ありw
岩に突撃するが如しww
たまに 大学教授で、講義で選択公理を教えていたと宣う人に
省5
41(1): 02/02(日)19:24 ID:7z4Dw9JT(8/18) AAS
>>40
>突っかかるやつへの対抗ですよw ;p)
君自身がコピペした内容理解してないから無意味
君、Jechの証明理解してないじゃん
42(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)19:26 ID:5scbwZz/(6/12) AAS
>>39
(引用開始)
>Xの元を すきな順番に整列できる
P(X)-{φ}からその要素を選択する選択関数をどう決めるか次第でね
ただ選択関数を決めてしまったら順番は一意だけど
(引用終り)
ふっふ、ほっほ
省14
43: 02/02(日)19:35 ID:7z4Dw9JT(9/18) AAS
>>42
一意性の話なんて誰もしてないのに何を勘違いしてんだ?このおサルは
44(1): 02/02(日)19:38 ID:7z4Dw9JT(10/18) AAS
>>42
>3)つまり、あなたの選択関数と、私が(思う)選択する選択関数w
> は、異なって良いのです!!ww ;p)
だからと言って勝手な選択関数は作れない。
もし作れるならそもそも選択公理は不要。
だから
>すきな順番に整列できる
省1
45: 02/02(日)19:39 ID:7z4Dw9JT(11/18) AAS
無限個のうちの有限個は好きな順番にできるとか屁理屈捏ねるのが猿知恵の限界
46: 02/02(日)19:44 ID:7z4Dw9JT(12/18) AAS
>>40
>>17にはいつ答えるの?
これに正当できなければJechの証明を理解できたことにならないんだけど
47(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)19:45 ID:5scbwZz/(7/12) AAS
>>41
(引用開始)
>突っかかるやつへの対抗ですよw ;p)
君自身がコピペした内容理解してないから無意味
君、Jechの証明理解してないじゃん
(引用終り)
ふっふ、ほっほ
省38
48: 02/02(日)19:49 ID:7z4Dw9JT(13/18) AAS
>>47
屁理屈はいいので早く>>17に答えて下さいね
49: 02/02(日)19:51 ID:7z4Dw9JT(14/18) AAS
>>47
>私も 誤解がありましたが、>>14の alg-d 壱大整域氏 の証明で、ようやく理解できました
いいえ、あなたは理解できてません。理解できてる人が
>すきな順番に整列できる
などという嘘デタラメ言いません。
50(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)19:58 ID:5scbwZz/(8/12) AAS
>>44
(引用開始)
>3)つまり、あなたの選択関数と、私が(思う)選択する選択関数w
> は、異なって良いのです!!ww ;p)
だからと言って勝手な選択関数は作れない。
もし作れるならそもそも選択公理は不要。
だから
省16
51(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)20:01 ID:5scbwZz/(9/12) AAS
>>50 補足
>・もし ちゃんと 理解出来ているならば
> 選択公理(選択関数)には 大きな自由度(任意度)があるのが分るはずです
>あなたは、真に Jechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が
>ちゃんと 理解出来ては いない!!www ;p)
その 選択公理(選択関数)の誤解・誤読が
箱入り無数目の あなたの議論の迷走の 根源です!w ;p)
52(1): 02/02(日)20:15 ID:5wVsPQ6t(1/5) AAS
「好きな順番に整列できる!」→有限バカ一代か?!w
53(1): 02/02(日)20:25 ID:5wVsPQ6t(2/5) AAS
「自分の好きな順番」と言う場合、「その順番ってZF内で記述できるの?」
ということが問題になり、それが可能なら選択公理は要らないよね
ということに気づかないのは、迂闊であり、有限バカだから。
54(2): 02/02(日)21:10 ID:eC5TmypE(2/2) AAS
>>42
> 選択関数の一意性を主張
また読み違えたね
選択関数が一意的なんて誰も言ってないよ
選択関数を決めたら整列は一意だといったまで
選択関数が一意的でないのだから可能な整列も一意的ではない
さらに整列から選択関数も決められるが、
省2
55(2): 02/02(日)21:54 ID:bvvTKD+8(1/2) AAS
わからない
56(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)21:56 ID:5scbwZz/(10/12) AAS
>>52-54
>「自分の好きな順番」と言う場合、「その順番ってZF内で記述できるの?」
>ということが問題になり、それが可能なら選択公理は要らないよね
>ということに気づかないのは、迂闊であり、有限バカだから。
1)整列可能定理で、整列させる順番は、決して一意ではない
2)それは、有限 or 無限 とは別問題ですよ
3)”それが可能なら選択公理は要らないよ”は、誤解と無理解の 複雑骨折ですねw ;p)
省16
57(1): 02/02(日)22:29 ID:7z4Dw9JT(15/18) AAS
>>50
>・それ、自爆発言ですね
それが君
>・自ら、>>47のJechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が
> ちゃんと 理解出来ていないと 自白しているに 等しい!w
それが君
>・もし ちゃんと 理解出来ているならば
省5
上下前次1-新書関写板覧索設栞歴
あと 945 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s