[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
392(4): 2022/10/31(月)22:32 ID:V6kL7bYX(19/47) AAS
以下の定理は、証明は全て省略する。
定理:(X,F,ν)は有限測度空間とする。νから生成される外測度 ν^* と内測度 ν_*について、
ν_*(X−A)=ν(X)−ν^*(A) (∀A⊂X) が成り立つ。
定理:(X,F,ν)は有限測度空間とする。その完備化を(X,F_w,ν_w)と置く。
このとき、A⊂X に対して、A∈F_w が成り立つことと ν^*(A)=ν_*(A) が成り立つことは同値である。
定理:(X,F,ν)は有限測度空間とする。その完備化を(X,F_w,ν_w)と置く。
よって、νから生成される外測度 ν^* と、ν_w から生成される外測度 ν_w^* の2種類を得るが、
省9
406: 2022/10/31(月)22:58 ID:V6kL7bYX(31/47) AAS
任意の k≧1 に対して、
(d≦k)∩[0,1)^N = [0,1)^k(T^[k]∩[0,1)^N)
が成り立つことが確かめられる。特に、
μ_N^*((d≦k)∩[0,1)^N) = μ_N^*([0,1)^k(T^[k]∩[0,1)^N)) = μ_N^*(T^[k]∩[0,1)^N),
μ_{N*}((d≦k)∩[0,1)^N) = μ_{N*}([0,1)^k(T^[k]∩[0,1)^N)) = μ_{N*}(T^[k]∩[0,1)^N)
省4
411(1): 2022/10/31(月)23:03 ID:V6kL7bYX(35/47) AAS
今の時点で、
・ μ_N^*(d≦k) = μ_N^*(T^[k]), μ_{N*}(d≦k) = μ_{N*}(T^[k]),
・ lim[k→∞] μ_N^*(T^[k]) = 1, μ_{N*}(T^[k])=0 (k≧0)
が得られている。特に、ある k_0≧1 が存在して、k≧k_0 のとき μ_N^*(T^[k]) > 0 である。
よって、μ_N^*(T^[k]) > μ_{N*}(T^[k]) (∀k≧k_0) である。すなわち、
μ_N^*(d≦k) > μ_{N*}(d≦k) (∀k≧k_0)
である。([0,1]^N, F_N, μ_N) の完備化 ([0,1]^N, F_{Nw}, μ_{Nw}) について、
省4
416(1): 2022/10/31(月)23:09 ID:V6kL7bYX(39/47) AAS
定理:>>376の確率空間(Y_n,E_n,α_n)について、ここでは n=99 の場合を考える。
d:[0,1]^N → N∪{0}は決定番号の写像とする。z=(z^{0},…,z^{98})∈Y_99 に対して、
D(z):= max{d(z^{j})|0≦j≦98}
として D:Y_99 → N∪{0} を定義する。このとき、α_99^* (D≧k_0) > 0 である。
証明:k_0=0のときは、α_99^* (D≧0) > 0 を示せばよいが、そもそも D は非負なので、
(D≧0)=Y_99 であり、よって α_99^* (D≧0) = 1 > 0 である。
以下では、k_0≧1 としてよい。(Y_99,E_99,α_99)の完備化(Y_99, E_{99w}, α_{99w})について、
省1
418: 2022/10/31(月)23:11 ID:V6kL7bYX(40/47) AAS
さて、α_99^*(D≧k_0)>0 を示したいのだった。α_99^*(D≧k_0)=0 と仮定する。
このとき、>>392の定理により (D≧k_0)∈E_{99w} かつ α_{99w}(D≧k_0)=0 である。
(Y_{98},E_{98},α_{98})と([0,1]^N,F_N,μ_N)の積空間が(Y_99, E_99, α_99)であるから、>>393の定理により、
α_98.a.e. u∈Y_98, μ_N.a.e. v∈[0,1]^N s.t. ¬( (u,v)∈(D≧k_0) )
が成り立つ。すなわち、
α_98.a.e. u∈Y_98, μ_N.a.e. v∈[0,1]^N s.t. (u,v)∈(D≦k_0−1)
が成り立つ。よって、あるゼロ集合 M_98∈E_98が存在して、
省2
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s