[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
上
下
前
次
1-
新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
406
: 2022/10/31(月)22:58
ID:V6kL7bYX(31/47)
AA×
>>392
>>300
[240|
320
|
480
|
600
|
100%
|
JPG
|
べ
|
レス栞
|
レス消
]
406: [sage] 2022/10/31(月) 22:58:16.37 ID:V6kL7bYX 任意の k≧1 に対して、 (d≦k)∩[0,1)^N = [0,1)^k(T^[k]∩[0,1)^N) が成り立つことが確かめられる。特に、 μ_N^*((d≦k)∩[0,1)^N) = μ_N^*([0,1)^k(T^[k]∩[0,1)^N)) = μ_N^*(T^[k]∩[0,1)^N), μ_{N*}((d≦k)∩[0,1)^N) = μ_{N*}([0,1)^k(T^[k]∩[0,1)^N)) = μ_{N*}(T^[k]∩[0,1)^N) である。[0,1)^N∈F_N かつ μ_N([0,1)^N) = 1 = μ_N([0,1]^N)により、>>392の最後の定理が使えて μ_N^*(d≦k) = μ_N^*(T^[k]), μ_{N*}(d≦k) = μ_{N*}(T^[k]) である。(d≦k) ↑ [0,1]^N なので、μ_N^* の上への連続性(>>300の定理2)により lim[k→∞] μ_N^*(d≦k) = 1 であり、よって lim[k→∞] μ_N^*(T^[k]) = 1 である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/406
任意の に対して が成り立つことが確かめられる特に である かつ によりの最後の定理が使えて である なので の上への連続性の定理により でありよって である
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 596 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
ぬこの手
ぬこTOP
0.027s