[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1
(3): 2020/06/20(土)21:07 ID:OXXW5633(1/5) AAS
20200403の記者会見により、望月Inter-universal Teichmuller theory (abbreviated as IUT) (下記)は、新しい局面に入りました。
査読が終り、IUTが正しいことは、99%確定です。
このスレは、IUTを読むための用語集資料集スレとします。
議論は、本スレ Inter-universal geometry と ABC予想 53
2chスレ:math
または
Inter-universal geometry と ABC予想 (応援スレ) 48
省7
607
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/25(日)19:37 ID:eIdDsFH8(16/19) AAS
>>606
つづき

この方法で得られた函数は、注目すべきことに、ウェイト 2 でレベル N のカスプ形式であり、(モジュラ形式でもあるので)ヘッケ作用素の固有ベクトルとなっている。これがハッセ・ヴェイユ予想(Hasse?Weil conjecture)であり、モジュラリティ定理より従うこととなる。

逆に、ウェイト 2 のモジュラ形式は、楕円曲線の正則微分(英語版)(holomorphic differential)に対応する。モジュラ曲線のヤコビ多様体は、同種を同一視すると、ウェイト 2 のヘッケ固有形式に対応する既約アーベル多様体の積として書くことができる。1-次元要素は楕円曲線である。(高次元要素も存在し、すべてではないが、ヘッケ固有形式が有理楕円曲線へ対応する。)曲線は、対応するカスプ形式より得られるので、この方法で構成された曲線は、元々の曲線と同種である(一般には同型にはならない)。

モジュラーな楕円曲線
以下のような手続きで X_0(N)から作られる楕円曲線 Eのことをモジュラーな楕円曲線と呼ぶ。

ヤコビアン
省4
831: 2020/11/09(月)07:02 ID:SmS9RLVD(7/8) AAS
>>821
>例えば1から始まる自然数の集合N={1,2,3・・n・・}で、
>この要素は可算無限ある ∵Nは可算無限濃度の集合

0から始めなよ

>カッコを外して、並べると、
>1∈2∈3∈・・∈n∈・・
>となる可算無限上昇列ができる
省7
942: 2020/12/01(火)19:40 ID:gRCeSSmI(1) AAS
>>935
>超極限 (ultralimit) と呼ぶ
>数列 0.9, 0.99, 0.999, … の超冪構成
>に関する同値類 [(0.9, 0.99, 0.999, …)] は
>1 より無限小だけ小さい。

上記が0.999…じゃないってわからん◆yH25M02vWFhPって
正真正銘のパクチー野郎だなw
省19
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s