[過去ログ] (・ω・)俺が日々の数学的発見を書くスレ (139レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
23: ◆uxQt4Y4ywU 2019/06/20(木)12:08 ID:OEKcl1so(5/5) AAS
>>18
ありがとう
だけど気分によって投稿間隔が大幅に揺れるから
1ヶ月レスしないとかザラにあると思う
それは勘弁
24: ◆uxQt4Y4ywU 2019/06/20(木)12:18 ID:KCWGPWJy(1/2) AAS
>>20訂正
Σ[k=0→5]nCk(1/n)k
となっている箇所は正しくは
Σ[k=0→5]nCk(1/n)^k
25: ◆uxQt4Y4ywU 2019/06/20(木)19:02 ID:KCWGPWJy(2/2) AAS
["πは無理数"の早見表](暗記推奨)
I_n=(π^(n+1)/n!)∫[0→1]t^n*(1-t)^n*sintdtとすると
?I_[n+1]=((4n+2)/π)I_n-I_[n-1] , I_0=2 , I_1=4/π
?a^n*I_n→0 (n→∞) (for∀a>0)
π=p/q(p,q∈N)として、J_n=p^n*I_nとおくと
?J_[n+1]=q(4n+2)J_n-p^2*J_[n-1] , J_0=2 , J_1=4q
?J_n→0 (n→∞) , J_n∈N (for∀n)
→矛盾であるのでπ∈¬Q//
26: ◆uxQt4Y4ywU 2019/06/22(土)08:58 ID:ViY+4mff(1/3) AAS
[定理]
2019個の有理数a_1,…,a_2019が
「どの1つを取り除いても残りの2018個を和が
等しくなるように1009個ずつに二分できる」
ならばa_1,…,a_2019は全て等しい。
27: ◆uxQt4Y4ywU 2019/06/22(土)09:03 ID:ViY+4mff(2/3) AAS
[概説]
a_1~a_2019は整数だとしてよく、全ての偶奇は一致する。
これらに対し、2で割るか、±1を足して2で割る操作を繰り返すと
あるタイミングでa_1~a_2019の中に0が生じるが、
このときに0でないものが含まれていると
その後2で割る操作を続けた時に奇数が生じて
a_1~a_2019の偶奇が一致することに矛盾する。
28: ◆uxQt4Y4ywU 2019/06/22(土)09:05 ID:ViY+4mff(3/3) AAS
[証明]
有理数a_1,a_2,…,a_2019のことを{a}と書く。
2019個の数が
「どの1つを除いても残りの2018個の数を総和が等しくなるように1009個ずつに二分出来る」
という性質を持つとき、これを性質Pと呼ぶ事にする。
{a}が性質Pを持つとき、各々の有理数に等しい整数をかけて出来る有理数列も性質Pを持つ。
よって、以下では{a}は全て整数として良い。
{a}の総和をSとすると、{a}が性質Pを持つとき、S-a_i=(偶数) (for∀i)である。
よってa_iとSの偶奇は一致し(for∀i)、したがって{a}の各々の偶奇は一致する。…(*)
ここで次の操作を考える。
省13
29: ◆uxQt4Y4ywU 2019/06/23(日)07:55 ID:SQl9GoQP(1/3) AAS
[定理]
2019個の実数a_1,…,a_2019が
「どの1つを取り除いても残りの2018個を和が
等しくなるように1009個ずつに二分できる」
ならばa_1,…,a_2019は全て等しい。
30: ◆uxQt4Y4ywU 2019/06/23(日)07:55 ID:SQl9GoQP(2/3) AAS
[証明]
実数a_1,a_2,…,a_2019のことを{a}と書く。
また、行列Xの転置行列をX^Tと書く。
題意より、{a}からa_iを取り除いて、和が等しくなるように
1009個ずつのグループP,Qに二分する事ができる。
行列Aの(i,j)成分A(i,j)を次のように定める。
A(i,i)=0 , A(i,j)=1(if a_j∈P) , A(i,j)=-1(if a_j∈Q)
列ベクトルxを、x=(a_1,…,a_2019)^Tとすると、
Ax=0 (0は2019×1の零行列)である。
ここで、Aから1列目と2019行目を取り除いた
省21
31: ◆uxQt4Y4ywU 2019/06/23(日)07:58 ID:SQl9GoQP(3/3) AAS
↑訂正
(1,n)としてある所は正しくは(n,1)
32: ◆uxQt4Y4ywU 2019/06/23(日)07:59 ID:d+1+ZoF7(1/7) AAS
[定理]
無理数の無理数乗が有理数となる場合が存在する。
33(1): ◆uxQt4Y4ywU 2019/06/23(日)08:04 ID:d+1+ZoF7(2/7) AAS
[証明]
「ある無理数a,bが存在してa^b∈Qとなる」
を命題Pとする。√2は無理数である。
(√2)^(√2)が有理数ならばPは真。
(√2)^(√2)が無理数ならば、これの√2乗は
((√2)^(√2))^(√2)=(√2)^2=2∈Qとなり、
無理数の無理数乗が有理数となるのでPは真。
以上からPが真である事が示された。//
34: ◆uxQt4Y4ywU 2019/06/23(日)08:04 ID:d+1+ZoF7(3/7) AAS
[定理]
√2は無理数である。
35: ◆uxQt4Y4ywU 2019/06/23(日)08:11 ID:d+1+ZoF7(4/7) AAS
[証明]
1^2<(√2)^2<2^2より1<√2<2である。
√2=p/q(p,q∈N)とおけると仮定する。
このような(p,q)の組のうち、qが最小となるものを
(p,q)=(A,B)とする。このとき、
1<A/B<2なので0<A-B<Bが言える。
ここで、(2B-A)/(A-B)という数を考える。
(2B-A)/(A-B)
=(2-(A/B))/((A/B)-1)
=(2-√2)/(√2-1)
省4
36: ◆uxQt4Y4ywU 2019/06/23(日)08:12 ID:d+1+ZoF7(5/7) AAS
[c.f.]
2^(1/3)は無理数である。
37: ◆uxQt4Y4ywU 2019/06/23(日)08:14 ID:d+1+ZoF7(6/7) AAS
[証明]
2^(1/3)=p/q(p,q∈N)とおけると仮定すると、
2=(p/q)^3なので、q^3+q^3=p^3となる。
しかし、これはフェルマーの最終定理のn=3の場合に矛盾する。
したがって、2^(1/3)は無理数。//
38: ◆uxQt4Y4ywU 2019/06/23(日)08:17 ID:d+1+ZoF7(7/7) AAS
ちなみに、(√2)^(√2)が無理数である事はベイカーの定理や、その特別な場合であるゲルフォント・シュナイダーの定理から示せる。
39(1): 2019/06/23(日)08:20 ID:qc/xMCO6(1) AAS
正整数の有理数乗は、絶対値として無理数か整数かのいずれかをとる
40: ◆uxQt4Y4ywU 2019/06/23(日)08:31 ID:arQfrD2D(1/4) AAS
πとeが超越数である事を認めれば、π+eとπeの少なくとも一方が超越数である事が示される。
π+eとπeがいずれも代数的数だと仮定すると
方程式x^2-(π+e)+πe=0の解は代数的数になるが、
これは解x=πまたはx=eが超越数である事に矛盾する。
41: ◆uxQt4Y4ywU 2019/06/23(日)08:32 ID:arQfrD2D(2/4) AAS
>>39
良いことを言うね
42: ◆uxQt4Y4ywU 2019/06/23(日)08:34 ID:arQfrD2D(3/4) AAS
[定理]
積分路γで囲まれた領域中のf(z)の極の集合をFとして
?[γ]f(z)dz=2πiΣ[ω∈F]Res[z=ω]f(z)
上下前次1-新書関写板覧索設栞歴
あと 97 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.007s