[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ17 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
423
(2): 05/17(土)14:58 ID:0l6LbjtF(9/15) AAS
>>419
>”開集合(位相空間論)”には、突っ込めないのか?
>”岡の不定域イデアル & カルタンの層 の思想”には、突っ込めないのかな??

もっと基本的なことで突っ込むと
>>403は、どうもおかしいので、
Copilotに尋ねたら、全然違うこといったぞw

(引用始)
省18
427
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 05/17(土)16:12 ID:y2zepp9J(8/13) AAS
>>423
(引用開始)
Copilotに尋ねたら、全然違うこといったぞw
(引用始)
Q.距離空間上の連続関数は稠密な部分集合上での値によって一意に決まる というけど、その証明は?
A.この主張は、連続関数の稠密集合上での値がその関数全体を決定することを述べています。
つまり、ある距離空間 𝑋 上の連続関数 𝑓:𝑋→𝑅 が、稠密な部分集合 𝐷⊂𝑋 上で一致しているならば、全体でも一致するということです。
省23
456
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 05/19(月)14:45 ID:q68wgaXf(1/2) AAS
>>449 裏話さらに追加
 >>399より
Q:”「実数から実数への連続関数は
 すべての有理数の点の上での値だけで特定できる」”

この問題で、まず浮かんだ 典型例が よく知られた ディリクレの関数、トマエ関数など病的関数で
外部リンク:ja.wikipedia.org
(上記wikipediaより”「病的な関数」の古典的な例の一つに、至る所で連続であるが至る所微分不可能な、ワイエルシュトラス関数と呼ばれるものがある”)
省28
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s