[過去ログ] スレタイ 箱入り無数目を語る部屋3 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
486(4): 2022/09/29(木)07:32 ID:XaGDq0h2(1/3) AAS
>>474 補足
>多項式環 F[x]は、無限次元 線形空間だが、それは可能無限であって、
>形式的冪級数環R[[X]]には、多項式環 F[x]には含まれない実無限の冪級数が含まれている
多項式環の完備化が形式冪級数環
外部リンク:ja.wikipedia.org
多項式環
冪級数
省17
487(3): 2022/09/29(木)07:33 ID:XaGDq0h2(2/3) AAS
>>486
つづき
外部リンク:webcache.googleusercontent.com
maspy
多項式環 k[X] → 極大イデアル(X)で完備化 → 形式的べき級数環 k[[X]] → 商体 → 形式的Laurent級数体 k((X)) Sep 27, 2019
maspy
Sep 27, 2019
省12
489(6): 2022/09/29(木)21:18 ID:XaGDq0h2(3/3) AAS
>>487 補足
レーヴェンハイム?スコーレムの定理で
"定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す"
多項式環において、その元の各多項式は有限次だが、
その次数はいくらでも大きくとることができる
従って、多項式環は無限次元線形空間を成す>>459 (代数学 I (第2回) 都築 暢夫 広島大)
無限次元線形空間においては、無限次元ベクトルが取れる
省11
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.445s*