[過去ログ]
スレタイ 箱入り無数目を語る部屋3 (1002レス)
スレタイ 箱入り無数目を語る部屋3 http://rio2016.5ch.net/test/read.cgi/math/1660377072/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
81: 132人目の素数さん [] 2022/08/27(土) 12:08:16.94 ID:W1i1kXFy >>78 ポーカーと時枝戦略で確率変数を同じように取る必要は無いし、実際以下のように違う取り方をしている。 「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」 何度も何度も何度も何度も言ってるが、時枝戦略を否定したいなら時枝戦略を語って下さい。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/81
209: 132人目の素数さん [] 2022/09/11(日) 08:37:11.94 ID:cFRF8/nb >>208 つづき 1)前レスで、ランダムサンプリングができない非正則な分布>>51について説明した この場合、できるのは作為によるサンプリング(有意抽出>>196)のみ 2)これを時枝記事>>1に見ると、人は自然に ”決定番号∈自然数N”だからと 直感的に100個の数 d1<d2<d3<・・・<d100 を思う(>>162) そして、d1,d2,d3,・・・,d100から、作為でこれらに対応する代表元を思い浮かべる が、これが作為だという自覚が無い人が大半だ(大学レベルの確率論や確率過程論を習得した人以外では) 3)代表元は、ユークリッド空間の点と考えることができる(>>195) また、代表元の集合は、多項式環と見ることが出来て(>>189-190) 多項式環は、無限次元空間だ(>>190) 4)だから、d1<d2<d3<・・・<d100 を、常にd100 +1次元のユークリッド空間に埋め込むことが出来て d100 +1次元のユークリッド空間の超体積V''中では0に潰れているということが分かる>>196 5)d1<d2<d3<・・・<d100から、99個の数を選びその最大値をDmax99としよう>>43 時枝記事に従って、Dmax99+1番目までの箱を開ける(下記の数学セミナー記事ご参照) このとき、二つのことが起きる a)問題の列と代表列の比較で、一致部分は既に終わっていて、Dmax99+1番目の箱の数は一致しない!(問題の列の決定番号>Dmax99+1) b)問題の列と代表列の比較で、一致部分はまだ終わっておらず、Dmax99+1番目の箱の数まで一致(問題の列の決定番号<=Dmax99+1) 6)上記b)の場合、Dmax99+1番目の箱の数まで、無限の箱の数が一致するのだから、その確率は0だ これはちょうど、上記4)項の「超体積V''中では0に潰れている」と整合する つまり、b)のケースが起こるのは、作為によるときのみです よって、99/100はイカサマ確率です (参考) https://rio2016.5ch.net/test/read.cgi/math/1620904362/403 時枝問題(数学セミナー201511月号の記事) http://rio2016.5ch.net/test/read.cgi/math/1660377072/209
247: 132人目の素数さん [] 2022/09/16(金) 15:59:41.94 ID:Rmoz01ia >>245 オチコボレがw 聞いたセリフだなww http://rio2016.5ch.net/test/read.cgi/math/1660377072/247
286: 132人目の素数さん [sage] 2022/09/18(日) 12:11:20.94 ID:ldv25uGN >>285のような反復試行を否定するのは、確率の概念を何も理解してないのと同じ。 ・ ここに100枚のコインC1, C2,…, C100 がある。どのコインも表と裏が1/2の確率で出ることになっている。 本当にそうなのかを調べるために、 「それぞれのコインに対して、コインを固定するごとに、何度もそのコインを投げてテストする」という反復試行によって統計を取る。 ・ コインC1について調べるなら、毎回必ずコインC1を手に取り、そのたびにそのコインを投げてテストするという反復試行で統計を取る。 ・ コインC20について調べるなら、毎回必ずコインC20を手に取り、そのたびにそのコインを投げてテストするという反復試行で統計を取る。 ・ その結果、コインを固定するごとに、「そのコインだと表・裏が1/2ずつの確率で出る」ということが判明した。 確率とはこういうものだろう?では、時枝戦術の場合はどうか? ・ 時枝戦術は高い勝率を誇る戦術であるらしい。出題者は、何を出題しても時枝戦術の前には無力であるらしい。 本当にそうなのかを調べるために、 「それぞれの出題に対して、出題を固定するごとに、何度もその出題に対して時枝戦術をテストする」という反復試行によって統計を取る。 ・ (√2, √2, √2, …) という出題について調べるのなら、毎回必ず (√2, √2, √2, …) を出題し、 そのたびにスレ主は時枝戦術をテストするという反復試行によって統計を取る。 ・ (√3, √4, √5, √6, …) という出題について調べるのなら、毎回必ず (√3, √4, √5, √6, …) を出題し、 そのたびにスレ主は時枝戦術をテストするという反復試行によって統計を取る。 ・ その結果、出題を固定するごとに、「その出題だと時枝戦術で 99/100 以上の確率で何らかの箱の中身を当てられる」 ということが判明した。 コインの場合と文体まで揃えてやったので、これならスレ主でも理解できるだろ。 以上のことから、時枝戦術は勝てる戦術である。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/286
466: 132人目の素数さん [sage] 2022/09/24(土) 12:23:45.94 ID:jchTZ8QX >>460 >・だから、決定番号d1,・・d100を全て有限に選ぶことは無作為にはできない > (∵ g(x)の次数は、いくらでも大きく取ることができ、無限次元線形空間の点なのだから、基本は無限大) ここに1枚の紙を用意する。紙の大きさは無限大であり、 いくらでも「記録」を書き込むことができるものとする。 出題者はランダムに実数列を出題するとする。 実数列を1回出題するごとに、100個の決定番号 d1〜d100 が出力される。 この100個の値を、上記の紙にメモしていくことにする。 今回は出題がランダムなので、100個の値も毎回違ってくる。 この作業を可算無限回繰り返す。 よって、紙の中には「100個の決定番号の値」が可算無限回分、記録される。 何度も言うが、今回は出題がランダムなので、100個の値は毎回違っている。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/466
606: 132人目の素数さん [sage] 2022/10/08(土) 21:40:36.94 ID:KZUZ2KEb >>600 ついでだから、もう1つツッコミを入れておくわ。 >有限区間[a,b] a,b∈R なら、正則な一様分布になる >しかし、b→∞ なら、非正則分布(一様だが積分が発散)になる>>51 これ、実は間違ってる。有界閉区間の一様分布から出発して b→+∞ の極限値を取っても、 それは非正則分布(一様だが積分が発散)にはならない。なぜなら、 「一様だが積分が発散している R 上の分布 (=非正則分布) 」 は数学的には 存 在 し な い からだ。存在しない分布が、 ・ 有界閉区間の一様分布において b→+∞ の極限値を取る といった、数学的に矛盾のない操作だけを用いて実現できるわけがない。 それができたら、「数学そのものの中に矛盾が見つかった」ことになって大事件である。 ただ単に、「b→∞ とすることで非正則分布になるとスレ主が勘違いしているだけ」である。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/606
655: 132人目の素数さん [sage] 2022/10/10(月) 12:49:38.94 ID:fMmIzuDH >>648 >笑える その言葉、>>272で >多項式環を確率計算に応用しようとして、 >多項式環からの無作為抽出を考えると、 >無限次の多項式もどきの式を考える必要が出てくるってことです と初歩的な誤りを臆面もなく口にした中卒君、 あなたにそっくりそのままお返ししますwwwwwww http://rio2016.5ch.net/test/read.cgi/math/1660377072/655
673: 132人目の素数さん [] 2022/10/10(月) 15:30:25.94 ID:KbysNzzt >>667 99/100の出所が分かってないとしか言い様が無い。 以下を100回音読しなさい。 「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」 尚、多項式環だの無限次元だの持ち出しても無意味と知るべし。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/673
695: 132人目の素数さん [sage] 2022/10/10(月) 18:00:31.94 ID:/bF8CLbh さて、ここからが本題。 (1)「時枝記事では P(A|B^{D})≧ 99/100 が成り立つと主張しているが、それはおかしい」 というのが君の主張である。ところが、時枝記事で本当に主張しているのは (2)「 d=(d_1,…,d_100)∈N_100 を固定するごとに η(A_d) ≧ 99/100 である(>>693)」 という主張である。時枝記事では(1)を主張していない。ただ単に(2)を主張しているに過ぎない。 このことを確認するには、「(1)の計算をしている」と解釈しながら時枝記事を読み進めた場合と、 「(2)の計算をしている」と解釈しながら読み進めた場合で、どちらに不整合が生じるかを見ればよい。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/695
699: 132人目の素数さん [sage] 2022/10/10(月) 18:29:29.94 ID:/bF8CLbh くどいかもしれないが、補足しておこう。 >>688 >だからなんで総和をとるの >固定するんでしょ まさにここがポイント。時枝記事では「99/100以上」という勝率を導いたあと、総和を取ってない。 もし時枝記事の確率計算が P(A)=Σ[D=1〜∞] P(A|B^{D}) * P(B^{D}) を意図した計算ならば、 P(A|B^{D}) と P(B^{D}) の2種類の確率を求めた上で、最後に総和を取っていなければおかしい。 しかし、時枝記事では1種類の確率しか計算してないし、総和も取ってない。それはなぜか?理由は簡単だ。 時枝記事では、P(A)=Σ[D=1〜∞] P(A|B^{D}) * P(B^{D}) という計算なんぞ やってないのだ。 時枝記事で本当にやっている確率計算は、 (2)「 d=(d_1,…,d_100)∈N_100 を固定するごとに η(A_d) ≧ 99/100 である(>>693)」 という計算なのだ。そして、この(2)を計算していると解釈しながら時枝記事を読み進めた場合、不整合は生じない。 結局、君が時枝記事の読み方を間違えているのだ。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/699
917: 132人目の素数さん [] 2022/10/21(金) 16:51:29.94 ID:dBYBl8GO >>896 >回答者の戦略は時枝戦略で決まってるのだから回答者は実は不要 そうだよ。誰も不要じゃないなんて言ってない。 >後は出題者がどのように箱の中に実数を隠せばどうなるかを調べるだけ 任意の固定された出題列で99/100以上の勝率で勝てるのが時枝戦略。 出題列の固定はルールとして明確に記載されている。 反論があるなら、記事原文のどの部分がどう間違ってるのか具体的に指摘せよ。 数学板は妄想を語る場ではない。 http://rio2016.5ch.net/test/read.cgi/math/1660377072/917
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s