[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
711(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/01(日)23:18 ID:o4gNmK89(17/18) AAS
>>708-710
・無限公理の本質は、それを表現する式のテクニカルな話ではない。単に、後者関数を帰納的に繰返しただけでは、自然数の集合N(順序数ではω)の存在はすっきり言えないってことです
・無限公理の本質は、下記の極限順序数通り。ある後者関数を選ぶと、帰納的に自然数の元が構成できる。そして、無限公理で、極限順序数ω(それは自然数の集合Nでもある)の存在が導かれる
・その後、ωに後者関数を適用することで、”ω, S(ω), S(S(ω)), S(S(S(ω))), ......”(下記)と続くということです
・後者関数の選び方には、任意性があるが、「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
・だから、シングルトンによる後者関数に目くじら立てるのは間違い。シングルトンによる後者関数であっても極限順序数は可能ですよ
∵シングルトンによる後者関数によって全ての自然数の元が尽くせるなら、それらの元を集めた無限集合たる自然数の集合Nが構成可能であって、それは極限順序数ωでもあるのです!
省8
712(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/01(日)23:19 ID:o4gNmK89(18/18) AAS
>>711
つづき
外部リンク:ja.wikipedia.org
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。あるいは、順序数 λ が極限順序数であるための必要十分条件は「λ より小さい順序数が存在して、順序数 β が λ より小さい限り別の順序数 γ が存在して β < γ < λ とできることである」と言ってもよい。任意の順序数は、0 または後続順序数、さもなくば極限順序数である。
例えば、任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。
外部リンク:ja.wikipedia.org
省6
713(1): 特別支援学校教諭 2020/11/02(月)06:18 ID:PUodusEe(1/12) AAS
>>711
噛んで含める説明
>無限公理の本質は
以下の式の通りですよ
「ある集合Aが存在し、Aは空集合を要素とし
Aの任意の要素xについて、その後者S(x)も要素とする」
∃A({}∈A∧∀x∈A(S(x)∈A))
省5
714(2): 特別支援学校教諭 2020/11/02(月)06:24 ID:PUodusEe(2/12) AAS
>>711
>後者関数の選び方には、任意性があるが、
>「二階述語論理によって定式化することで、
> ペアノシステムを同型の違いを除いて
> 一意に定めることができる」
それ、「可算無限シングルトン」と無関係ですね
ちなみに一階述語論理では、一意化できません
省11
715(1): 特別支援学校教諭 2020/11/02(月)06:30 ID:PUodusEe(3/12) AAS
>>711
>シングルトンによる後者関数であっても極限順序数は可能ですよ
より正確にいえば
「後者関数による後者がシングルトンであっても、極限順序数は生成可能」
で、核心
◆yH25M02vWFhP氏、がいってるのは
「後者関数による後者がシングルトンならば、極限もシングルトン」
省4
716(1): 特別支援学校教諭 2020/11/02(月)06:37 ID:PUodusEe(4/12) AAS
>>711
大事なことなので繰り返しますね
>シングルトンによる後者関数によって全ての自然数の元が尽くせるなら、
>それらの元を集めた無限集合たる自然数の集合Nが構成可能であって、
>それは極限順序数ωでもあるのです!
ええ、その通りですよ。で、
N(=ω)は全ての自然数{}、{{}}、{{{}}}、…を集めた無限集合なんでしょう?
省3
718(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/02(月)07:06 ID:YSe1lExr(1) AAS
>>711 補足
1.自然数のノイマン構成(>>706)で、”無限公理”を適用して、可算無限集合 つまりは自然数の集合N(順序数ω)が構成できたとする
2.0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. となる
3.ここに、後者関数 S(α) := SN(α) ノイマン構成の後者関数である
4.さて、後者関数を S(α) := SZ(α) シングルトンによる後者関数(Zermelo)に置き換えても、上記2と同じことが言える
5.これを担保するのが、「レーヴェンハイム=スコーレムの定理:一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ」(>>706)ってことです
なお、これらを下記のスレに転載しておきますよ
省3
719: 特別支援学校教諭 2020/11/02(月)07:59 ID:PUodusEe(6/12) AAS
>>711
>「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
>>718
>「レーヴェンハイム=スコーレムの定理:一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ」
どっちも、後者関数をどう設定するかとは無関係ですけどね
つまり後者関数を決めたところで、どっちもいえます
「後者関数の任意性」とは無関係です
省3
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s