[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
710
(1): 特別支援学校教諭 2020/11/01(日)22:19 ID:Fdz+cM+e(23/23) AAS
無限公理は、後続順序数をシングルトンで表す場合なら以下の通り

空集合を要素とし、任意の要素 x に対して {x} を要素に持つ集合が存在する:

∃A({}∈A∧∀x∈A({x}∈A))

つまり A={{},{{}},{{{}}},…}
711
(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/11/01(日)23:18 ID:o4gNmK89(17/18) AAS
>>708-710
・無限公理の本質は、それを表現する式のテクニカルな話ではない。単に、後者関数を帰納的に繰返しただけでは、自然数の集合N(順序数ではω)の存在はすっきり言えないってことです
・無限公理の本質は、下記の極限順序数通り。ある後者関数を選ぶと、帰納的に自然数の元が構成できる。そして、無限公理で、極限順序数ω(それは自然数の集合Nでもある)の存在が導かれる
・その後、ωに後者関数を適用することで、”ω, S(ω), S(S(ω)), S(S(S(ω))), ......”(下記)と続くということです
・後者関数の選び方には、任意性があるが、「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
・だから、シングルトンによる後者関数に目くじら立てるのは間違い。シングルトンによる後者関数であっても極限順序数は可能ですよ
 ∵シングルトンによる後者関数によって全ての自然数の元が尽くせるなら、それらの元を集めた無限集合たる自然数の集合Nが構成可能であって、それは極限順序数ωでもあるのです!
省8
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.031s