[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
606(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/25(日)19:37 ID:eIdDsFH8(15/19) AAS
>>602
>>q-parameters
>モジュラー形式のq-展開 q = exp(2πiz) と同様か
補足
モジュラリティ定理 q=e^{2πiτ}
「N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)」
外部リンク:ja.wikipedia.org
省17
607(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/25(日)19:37 ID:eIdDsFH8(16/19) AAS
>>606
つづき
この方法で得られた函数は、注目すべきことに、ウェイト 2 でレベル N のカスプ形式であり、(モジュラ形式でもあるので)ヘッケ作用素の固有ベクトルとなっている。これがハッセ・ヴェイユ予想(Hasse?Weil conjecture)であり、モジュラリティ定理より従うこととなる。
逆に、ウェイト 2 のモジュラ形式は、楕円曲線の正則微分(英語版)(holomorphic differential)に対応する。モジュラ曲線のヤコビ多様体は、同種を同一視すると、ウェイト 2 のヘッケ固有形式に対応する既約アーベル多様体の積として書くことができる。1-次元要素は楕円曲線である。(高次元要素も存在し、すべてではないが、ヘッケ固有形式が有理楕円曲線へ対応する。)曲線は、対応するカスプ形式より得られるので、この方法で構成された曲線は、元々の曲線と同種である(一般には同型にはならない)。
モジュラーな楕円曲線
以下のような手続きで X_0(N)から作られる楕円曲線 Eのことをモジュラーな楕円曲線と呼ぶ。
ヤコビアン
省4
609(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/25(日)19:54 ID:eIdDsFH8(18/19) AAS
>>606
>>>q-parameters
>>モジュラー形式のq-展開 q = exp(2πiz) と同様か
>補足
>モジュラリティ定理 q=e^{2πiτ}
>「N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)」
>外部リンク:ja.wikipedia.org
省14
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.420s*