[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
186(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/19(日)17:47 ID:2Y0qBKwb(7/9) AAS
>>185
つづき
外部リンク:ja.wikipedia.org
志村多様体(Shimura variety)とは代数多様体であってモジュラー曲線の高次元化とみなせるような整数論で重要な対象である。
歴史
「志村多様体」と言う命名はピエール・ドリーニュ(Pierre Deligne)が導入し、彼は志村理論の中で独立した抽象的な形をしている部分の研究を推し進めた。ドリーニュの定式化では、志村多様体はホッジ構造のあるタイプのパラメータ空間である。このようにして、彼らは、レベル構造を持つ楕円曲線のモジュライ空間がそうであったように、モジュラ曲線の自然に高次元への一般化を作り出した。
例
省3
187: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/19(日)17:48 ID:2Y0qBKwb(8/9) AAS
>>186
つづき
外部リンク:en.wikipedia.org
Shimura variety
In number theory, a Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over Q. Shimura varieties are not algebraic varieties but are families of algebraic varieties. Shimura curves are the one-dimensional Shimura varieties.
History
In Deligne's formulation, Shimura varieties are parameter spaces of certain types of Hodge structures. Thus they form a natural higher-dimensional generalization of modular curves viewed as moduli spaces of elliptic curves with level structure.
省4
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s