[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
180(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/19(日)09:47 ID:2Y0qBKwb(2/9) AAS
>>179
つづき
; later he has refined this result and shown that K may be recovered from the topological group GK and one Lubin-Tate character of GK (see [14] and [20]).
On the other hand, given a padic field K1, the Jarden-Ritter Theorem (see [8]) provides a characterization of all p-adic fields
K2 such that one has a topological isomorphism GK2 ' GK1 of their absolute Galois groups and
it is well-known that for every prime p, pairs of fields with this property always exists.
Mochizuki’s anabelian reconstruction yoga (see [22] and its references) provides, starting with
省12
181(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/19(日)09:48 ID:2Y0qBKwb(3/9) AAS
>>180
つづき
In this paper I consider a different approach to this problem of understanding the fluidity of ring structures and in particular to the problem of quantifying the fluidity of the additive structures on the set OΔK ∪ {0} for a p-adic field K.
I began thinking of this problem in Kyoto (Spring 2018) and my preoccupation with it became more or less permanent on my return from Kyoto.
The idea, which I elaborate here, occurred to me in a recent lecture by Michael Hopkins at the Arizona Winter School (2019).
In one of his lectures, Hopkins narrated an anecdote about Daniel Quillen’s discovery of the role of formal groups in topological cohomology theories:
in particular Quillen’s assertion (to Hopkins) that “as addition rule for Chern classes fails to hold,
省3
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s