[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
808: 132人目の素数さん [] 2020/11/08(日) 12:16:29.45 ID:BM2uk/CN >>795 >・”x∞={x∞}”の証明がない x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。 x∞に一番外側の"{"と"}"が有るならそれらを外したものはx∞自身ですから正則性公理に反します。 これ以外のケース(例えば、有り且つ無い)はありませんから、結局x∞は集合の要件を満たしません。 >・x∞の極小元は、明らかに空集合Φ={}です。よって、正則性公理に反しないQED いいえ、{}はx∞の元ではありません。 >・つーか、これ違う > ∵多分x∞の定義が違うだろうし、順序数と基数の∞との混同でしょう 定義は議論の出発点です。定義が違うと言われても意味不明です。 違う定義の議論をしたいならまずその定義を示して下さい。 http://rio2016.5ch.net/test/read.cgi/math/1592654877/808
820: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 22:51:02.15 ID:rSmWbt0i >>808 どなたか知らないが、レスありがとう >x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。 ??? 簡単に素朴集合論に戻るよ、例えば、下記 集合論 花木章秀で ”集合は「xに関する命題P(x)が真となるようなxの集まり」という形で記述される。 このとき、その集合を {x|P(x)} のように表す」という形で記述される”とあるよね だから、{x|P(x)} とすれば良い。要は、P(x)を作れば良いでしょ(P(x)で、「xはこうだ」と文を書けば良い) あるいは別法として、空集合Φを使ってシングルトンを作るとき、{Φ}の次に、{(Φ)}みたく内側にカッコを作る。()→{}の置き換えで、{{Φ}}となる 有限の範囲では、内側にカッコを作るか外側かは、違いがないけど、無限になると違う 内側だと{{・・Φ・・}}となる。外側だと・・{{Φ}}・・となる。(分かると思うが、・・のところは、カッコが続いている) この場合、>>779同様に幾何的に考えると >>782に維新さんが書いているように、一番外側の円を半径3/4として、そこから内側に半径1/2,1/3,…,1/n,…の円を描く 円の中心は原点0がある。この原点0を空集合Φと見なせば良い そして、>>779のように、各円の北極と南極に切れ目を入れて、左半円と右半円に分けて、半円をカッコに変形すれば 集合{{・・Φ・・}}ができる。この集合のカッコには、一番外側を1番として、その内の半径1/2が2番、その内の半径1/3が3番、と順にカッコに附番ができる そして、附番n以下全ての自然数を渡る。よって、一番外側に"{"と"}"が出来た QED (参考) http://math.shinshu-u.ac.jp/~hanaki/edu/set.html http://math.shinshu-u.ac.jp/~hanaki/edu/set/set2011.pdf 集合論 花木章秀 2011年度後期(2011/09/12) P15 Chapter2 2.1集合 集合は「xに関する命題P(x)が真となるようなxの集まり」という形で記述される。このとき、その集合を {x|P(x)} のように表す。例えば「100以上の整数の集まり」であれば {x|x∈Zかつx≧100} のように表す。 「かつ」というのを省略、あるいは英語で表して {x|x∈Z,x≧100},{x|x∈Z and x≧100} のようにも表す。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1592654877/820
821: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 23:10:29.80 ID:rSmWbt0i >>808 どなたか知らないが、レスありがとう >x∞に一番外側の"{"と"}"が有るならそれらを外したものはx∞自身ですから正則性公理に反します。 ??? 1.下記「正則性の公理は必ずしもZF公理系を拡張するために必要なものではない」とあるから、正則性公理を絶対視する必要ないと思うけど 2.されど 折角だから、正則性の公理、下記坪井明人 数理論理学II ”空でない集合 x には ∈ に関して極小となる元 z ∈ x があること,を直観的には意味している.”とあるよね 3.シングルトンだから、集合を構成する要素は一つ。それ自身が、極小ですよ 4.さらに、例えば1から始まる自然数の集合N={1,2,3・・n・・}で、この要素は可算無限ある ∵Nは可算無限濃度の集合 カッコを外して、並べると、1∈2∈3∈・・∈n∈・・ となる可算無限上昇列ができる 可算無限上昇列は、可だ ∵この場合要素1が、 ∈ に関して極小となる元だから QED (参考)>>785より http://www.math.tsukuba.ac.jp/~tsuboi/under.html 学群関係 Akito Tsuboi's Home Page 坪井明人 http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf 数理論理学II 坪井明人 目 次 第 1 章 公理的集合論の基礎 1.1.10 基礎の公理(正則性公理) . . . . . . . . . . .. . 9 基礎の公理(正則性公理) 空でない集合 x には ∈ に関して極小となる元 z ∈ x があること,を直観的には 意味している.基礎の公理は,それがなくても数学が展開できるので,ある意 味で技術的な公理である.しかし,基礎の公理を仮定した方が議論が展開しや すくなるので,通常は集合論の公理として加える. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1592654877/821
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.060s