[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
604: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 17:08:47.06 ID:eIdDsFH8 つづき モジュラー函数 複素変数複素数値の函数 f がモジュラーである、あるいはモジュラー函数とは、以下の条件 f は上半平面 H 上で有理型である; モジュラー群 Γ に属する任意の行列 M に対して f(Mτ) = f(τ) を満たす; f のフーリエ級数は f(τ )=Σ_{n=-m}-{∞}a(n)e^{2iπ nτ} の形に表され、これは下に有界、つまり e2iπτのローラン多項式であり、したがって尖点においても有理型である を満たすものを言う。任意のモジュラー函数がクラインの絶対不変量 j (τ) の有理函数として表され、また j (τ) の有理函数がモジュラー函数となることが示せる。さらに、任意の解析的モジュラー函数はモジュラー形式となるが、逆は必ずしも成り立たないことも示される。モジュラー函数 f が恒等的に 0 でないならば、基本領域 RΓ の閉包における f の零点の個数と極の個数とは一致する。 一般レベルのモジュラー形式 q-展開 モジュラー形式の q-展開 (q-expansion)[note 2] はカスプにおけるローラン級数、あるいは同じことだが(ノーム(nome)の平方)q = exp(2πiz) のローラン級数として表されるフーリエ級数である。実際、複素函数 "exp" はガウス平面上では消えないので q ≠ 0 だが、実軸の負の部分に沿って w → ?∞ とした極限で exp(w) → 0 なので、2πiz → ?∞ すなわち虚軸の正の部分に沿って z → i?∞ とした極限で q → 0 である。したがって、q-展開はカスプにおけるローラン級数になっている。 「カスプにおいて有理型」というは、負冪の項の係数のうち 0 でないものが有限個しかないという意味であり、したがって q-展開 f(z)=Σ_{n=-m}-{∞} c_{n}exp(2π inz)=Σ_{n=-m}-{∞}c_{n}q^n. は下に有界かつ q = 0 において有理型である。ここに、係数 cn は f のフーリエ係数であり、整数 m は f の i?∞ における極の位数である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/604
605: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 17:09:04.75 ID:eIdDsFH8 >>604 つづき デテキント・エータ函数は、 η (z)=q^{1/24} Π_{n=1}-{∞} (1-q^n), q=e^{2π iz} と定義され、モジュラー判別式(英語版) Δ(z) = η(z)^24 はウェイト 12 のモジュラー形式である。 この 24 という数は、次元 24 をもつリーチ格子(英語版) に関係する。 有名なラマヌジャン予想は、任意の素数 p に対して q^p の係数は、絶対値 2p^(11/2) 以下であることを主張し、ピエール・ドリーニュによってヴェイユ予想に関する研究の結果より、解決された。 歴史 モジュラー形式論は、4つの段階を経て発展してきた。はじめは、19世紀前半の楕円函数論に繋がる部分である。その後フェリックス・クラインらによって、19世紀の終わりにかけて(一変数の)保型形式の概念が理解されるようになり、エーリッヒ・ヘッケによって1925年頃から、また1960年代に、数論からの需要、とくに(かつて「谷山・志村予想」と呼ばれた)モジュラー性定理の定式化において、モジュラー形式の深い関わりが明らかにされた。 体系的な用語としての「モジュラー形式」は、ヘッケによるものである。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1592654877/605
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s