[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
602: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 17:08:18.11 ID:eIdDsFH8 >>601 >q-parameters モジュラー形式のq-展開 q = exp(2πiz) と同様か (参考) https://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B8%E3%83%A5%E3%83%A9%E3%83%BC%E5%BD%A2%E5%BC%8F モジュラー形式 (抜粋) モジュラー形式論は、もっと一般の場合である保型形式論の特別な場合であり、従って現在では、離散群の豊かな理論のもっとも具体的な部分であると見ることもできる。 例 格子上の函数としての扱い 重さ k のモジュラー形式は複素数全体の成す集合 C における格子 Λ の集合上の函数 F で条件 1.格子 ?α, z? が定数 α と変数 z で生成されるならば、F(Λ) は z の解析函数である。 2.α が 0 でない複素数で、αΛ を Λ の各元に α を掛けることによって得られる格子とするとき、F(αΛ) = α?kF(Λ) を満たす。 3.F(Λ) の絶対値は、 Λ の 0 でない最小の元の 0 からの距離が有界である限りにおいて、有界である。 をみたすものとして考えることができる。k = 0 のとき、条件 2 は F が格子の相似類にしか依らないことを言っている。条件 3 をみたす重さ 0 のモジュラー形式は定数関数のみである。条件 3 を外して、函数が極を持つことを許せば、荷重 0 の場合の例としてモジュラー函数と呼ばれるものを考 えることができる。 このように定めたモジュラー形式 F を複素一変数の函数に変換するのは簡単で、z = x + iy で y > 0 かつ f(z) = F(?1, z?) とすればよい(y = 0 とすると 1 と z が格子を生成できないので、y が正である場合にのみに限って考える)。前節の条件 2 はここでは、(モジュラー群の作用として)整数 a, b, c, d で ad ? bc = 1 を満たすものに対する函数等式 f(az+b / cz+d)=(cz+d)^kf(z) となる。たとえば f(-1/z)=F(1,-1/z)=z^kF( z,-1)=z^kF( 1,z )=z^kf(z) などである。 つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/602
606: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 19:37:18.79 ID:eIdDsFH8 >>602 >>q-parameters >モジュラー形式のq-展開 q = exp(2πiz) と同様か 補足 モジュラリティ定理 q=e^{2πiτ} 「N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)」 https://ja.wikipedia.org/wiki/%E8%B0%B7%E5%B1%B1%E2%80%93%E5%BF%97%E6%9D%91%E4%BA%88%E6%83%B3 谷山?志村予想 (抜粋) 谷山・志村予想は、「すべての有理数体上に定義された楕円曲線はモジュラーである」という主張であり、アンドリュー・ワイルズとその弟子クリストフ・ブロイル(英語版)、ブライアン・コンラッド(英語版)、フレッド・ダイアモンド(英語版)、リチャード・テイラーらによって証明された。 今日ではモジュラー性定理またはモジュラリティ定理 (modularity theorem) と呼ばれ、数論における一つの帰結と考えられている。ワイルズは半安定楕円曲線における谷山・志村予想を証明することで、フェルマーの最終定理も証明した。 谷山・志村予想の内容 谷山・志村予想とは、任意の Q 上の楕円曲線は、ある整数 N に対する古典的モジュラー曲線(英語版)(classical modular curve) X_0(N) からの整数係数を持つ有理写像(英語版)(rational map)を通して得ることができる。この曲線には明示的に定義が与えられ、整数係数を持つ。Level N のモジュラのパラメタ表示と呼ばれる。N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)であれば、このパラメタ表示は、Weight 2 とLevel N の特殊なモジュラ形式、すなわち、(必要であれば同種に従い)正規化された 整数のq-展開をもつ新形式(英語版)(newform)の生成する写像として、定義される。 モジュラリティ定理は、次の解析的なステートメントと密接に関連する。Q 上の楕円曲線 E に楕円曲線のL-函数を対応させる。このL-函数は、ディリクレ級数であり、 L(s,E)=Σ _{n=1}-{∞} {a_n}/{n^s} と表すことができる。 従って、係数 a_n}a_n の母函数は、 f(q,E)=Σ _{n=1}-{∞ } a_n q^n} である。 q=e^{2πiτ} を代入すると、複素変数 τ の函数 f(τ ,E) のフーリエ展開の形に書くことができ、従って、q-展開の係数は f のフーリエと考えることができる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/606
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s