[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
592: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 09:22:48.97 ID:eIdDsFH8 >>590 メモ貼る (参考) http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichm¨uller Theory By Shinichi Mochizuki Received xxxx xx, 2016. Revised xxxx xx, 2020 (抜粋) Contents § 2. Changes of universe as arithmetic changes of coordinates § 2.1. The issue of bounding heights: the ABC and Szpiro Conjectures A brief exposition of various conjectures related to this issue of bounding heights of rational points may be found in [Fsk], §1.3. In this context, the case where the algebraic curve under consideration is the projective line minus three points corresponds most directly to the so-called ABC and − by thinking of this projective line as the “λ-line” that appears in discussions of the Legendre form of the Weierstrass equation for an elliptic curve − Szpiro Conjectures. In this case, the height of a rational point may be thought of as a suitable weighted sum of the valuations of the q-parameters of the elliptic curve determined by the rational point at the nonarchimedean primes of potentially multiplicative reduction [cf. the discussion at the end of [Fsk], §2.2; [GenEll], Proposition 3.4]. Here, it is also useful to recall [cf. [GenEll], Theorem 2.1] that, in the situation of the ABC or Szpiro Conjectures, one may assume, without loss of generality, that, for any given finite set Σ of [archimedean and nonarchimedean] valuations of the rational number field Q, the rational points under consideration lie, at each valuation of Σ, inside some compact subset [i.e., of the set of rational points of the projective line minus three points over some finite extension of the completion of Q at this valuation] satisfying certain properties. つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/592
593: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 09:23:08.65 ID:eIdDsFH8 >>592 つづき In particular, when one computes the height of a rational point of the projective line minus three points as a suitable weighted sum of the valuations of the q-parameters of the corresponding elliptic curve, one may ignore, up to bounded discrepancies, contributions to the height that arise, say, from the archimedean valuations or from the nonarchimedean valuations that lie over some “exceptional” prime number such as 2. § 2.2. Arithmetic degrees as global integrals § 2.7. The apparatus and terminology of mono-anabelian transport Example 2.6.1 is exceptionally rich in structural similarities to inter-universal Teichm¨uller theory, which we proceed to explain in detail as follows. One way to understand these structural similarities is by considering the quite substantial portion of terminology of inter-universal Teichm¨uller theory that was, in essence, inspired by Example 2.6.1: (i) Links between “mutually alien” copies of scheme theory: One central aspect of inter-universal Teichm¨uller theory is the study of certain “walls”, or “filters” − which are often referred to as “links” − that separate two “mutually alien” copies of conventional scheme theory [cf. the discussions of [IUTchII], Remark 3.6.2; [IUTchIV], Remark 3.6.1]. The main example of such a link in inter-universal Teichm¨uller theory is constituted by [various versions of] the Θ-link. The log-link also plays an important role in inter-universal Teichm¨uller theory. The main motivating example for these links which play a central role in inter-universal Teichm¨uller theory is the Frobenius morphism ΦηX of Example 2.6.1. From the point of view of the discussion of §1.4, §1.5, §2.2, §2.3, §2.4, and §2.5, such a link corresponds to a change of coordinates. つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/593
598: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 10:36:05.31 ID:eIdDsFH8 >>592 "Szpiro Conjectures. In this case, the height of a rational point may be thought of as a suitable weighted sum of the valuations of the q-parameters of the elliptic curve determined by the rational point at the nonarchimedean primes of potentially multiplicative reduction [cf. the discussion at the end of [Fsk], §2.2; [GenEll],” ”q-parameter”:多分下記の楕円テータ関数 「q = e^2πiτ」だろうね(^^; https://member.ipmu.jp/yuji.tachikawa/ Yuji Tachikawa 立川裕二 https://member.ipmu.jp/yuji.tachikawa/lectures/ List of lectures (抜粋) ・2016年10月 場の量子論の数学と二次元四次元対応 (第67回「数学との遭遇」中央大) [詳細] ・2012年5月 数学者のための場の理論 (駒場) [講義ノート] ・2012年10月 数学者のための超対称場の理論 (京都大) [講義のページ] https://member.ipmu.jp/yuji.tachikawa/lectures/2014-butsurisuugaku2/ https://member.ipmu.jp/yuji.tachikawa/lectures/2014-butsurisuugaku2/notes.pdf 物理数学II (2014)講義ノート (抜粋) P14 楕円テータ関数 昔は q = e^πiτ 最近は (すくなくとも純粋数学および弦理論では) q = e^2πiτ。 Mathematica はまだ前者の定義。 https://ja.wikipedia.org/wiki/%E3%83%86%E3%83%BC%E3%82%BF%E9%96%A2%E6%95%B0 テータ関数 楕円テータ関数の定義 楕円テータ関数(だえんテータかんすう、英: elliptic theta function)は、以下のように定義された関数である[10][9]。 ただし、Im τ >0, q:=e^πiτ である。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1592654877/598
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s