[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
57: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/28(日) 17:20:05.27 ID:bfBvt+85 参考 https://waseda.pure.elsevier.com/ja/publications/bers-embedding-of-the-teichm%C3%BCller-space-of-a-once-punctured-torus-2 https://www.ams.org/journals/ecgd/2004-08-05/S1088-4173-04-00108-0/home.html https://www.ams.org/journals/ecgd/2004-08-05/S1088-4173-04-00108-0/S1088-4173-04-00108-0.pdf CONFORMAL GEOMETRY AND DYNAMICS An Electronic Journal of the American Mathematical Society Volume 8, Pages 115?142 (June 8, 2004) S 1088-4173(04)00108-0 BERS EMBEDDING OF THE TEICHMULLER SPACE ¨ OF A ONCE-PUNCTURED TORUS YOHEI KOMORI AND TOSHIYUKI SUGAWA Abstract. In this note, we present a method of computing monodromies of projective structures on a once-punctured torus. This leads to an algorithm numerically visualizing the shape of the Bers embedding of a one-dimensional Teichm¨uller space. As a by-product, the value of the accessory parameter of a four-times punctured sphere will be calculated in a numerical way as well as the generators of a Fuchsian group uniformizing it. Finally, we observe the relation between the Schwarzian differential equation and Heun’s differential equation in this special case. http://arimoto.lolipop.jp/video_lectures/2015.1.16.0900.Tao.pdf Introduction to Teichm¨uller Spaces Jing Tao Notes by Serena Yuan https://www.acadsci.fi/mathematica/Vol24/parkkone.pdf Annales Academia Scientiarum Fennica Mathematica Volumen 24, 1999, 305?342 THE OUTSIDE OF THE TEICHMULLER SPACE OF ¨ PUNCTURED TORI IN MASKIT’S EMBEDDING Jouni Parkkonen Universityof Jyv¨askyl¨a, Department of Mathematics つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/57
36: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/24(水) 23:19:10.61 ID:b5EBywaq メモ Inter-universal geometry と ABC予想 (応援スレ) 48 https://rio2016.5ch.net/test/read.cgi/math/1592119272/ 61 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/18(木) 17:17:22.36 ID:LPUPFt8f [2/4] >>57 補足 https://en.wikipedia.org/wiki/Szpiro%27s_conjecture Szpiro's conjecture Modified Szpiro conjecture The modified Szpiro conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f (using notation from Tate's algorithm), we have max{|c_4|^3 , |c_6|^2 } =< C( ε )・ f^{6+ε} https://en.wikipedia.org/wiki/Tate%27s_algorithm Tate's algorithm In the theory of elliptic curves, Tate's algorithm takes as input an integral model of an elliptic curve E over Q }Q , or more generally an algebraic number field, and a prime or prime ideal p. It returns the exponent fp of p in the conductor of E, the type of reduction at p, the local index cp=[E(Q p):E^0(Q p)], where E^0(Q p) is the group of Q p}Q p-points whose reduction mod p is a non-singular point. Also, the algorithm determines whether or not the given integral model is minimal at p, and, if not, returns an integral model with integral coefficients for which the valuation at p of the discriminant is minimal. Tate's algorithm also gives the structure of the singular fibers given by the Kodaira symbol or Neron symbol, for which, see elliptic surfaces: in turn this determines the exponent fp of the conductor E. Tate's algorithm can be greatly simplified if the characteristic of the residue class field is not 2 or 3; in this case the type and c and f can be read off from the valuations of j and Δ (defined below). Tate's algorithm was introduced by John Tate (1975) as an improvement of the description of the Neron model of an elliptic curve by Neron (1964). つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/36
58: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/28(日) 17:20:30.55 ID:bfBvt+85 >>57 つづき http://www.maths.gla.ac.uk/~mbourque/papers/2dim.pdf TOY TEICHMULLER SPACES OF REAL DIMENSION 2: THE PENTAGON AND THE PUNCTURED TRIANGLE YUDONG CHEN, ROMAN CHERNOV, MARCO FLORES, MAXIME FORTIER BOURQUE, SEEWOO LEE, AND BOWEN YANG ABSTRACT. We study two 2-dimensional Teichmuller spaces of surfaces with boundary and marked points, namely, the pentagon and the punctured triangle. We show that their geometry is quite different from Teichmuller spaces of closed surfaces. Indeed, both spaces are exhausted by regular convex geodesic polygons with a fixed number of sides, and their geodesics diverge at most linearly. https://en.wikipedia.org/wiki/Orbifold Orbifold http://webcache.googleusercontent.com/search?q=cache:N68OPG3WsG8J:pantodon.shinshu-u.ac.jp/topology/literature/orbifold.html+&cd=1&hl=ja&ct=clnk&gl=jp Orbifold のトポロジーと幾何学 pantodon.shinshu-u.ac.jp ? topology ? literature ? 以上 http://rio2016.5ch.net/test/read.cgi/math/1592654877/58
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s