[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
538: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/17(土) 16:31:00.47 ID:02Kfs2KS 下記、Goldfeld, Modular forms, elliptic curves, and the ABC-conjecture が、なかなか良いね https://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%94%E3%83%AD%E4%BA%88%E6%83%B3 スピロ予想 脚注 3^ D. Goldfeld, Modular forms, elliptic curves, and the ABC-conjecture. http://www.math.columbia.edu/~goldfeld/ DORIAN GOLDFELD http://www.math.columbia.edu/~goldfeld/Papers.html Selected Publications of Dorian Goldfeld http://www.math.columbia.edu/~goldfeld/ABC-Conjecture.pdf Modular Forms, Elliptic Curves, and the ABC Conjecture, (2003) pdf §1. The ABC-Conjecture. The ABC-conjecture was first formulated by David Masser and Joseph Osterl´e (see [Ost]) in 1985. Curiously, although this conjecture could have been formulated in the last century, its discovery was based on modern research in the theory of function fields and elliptic curves, which suggests that it is a statement about ramification in arithmetic algebraic geometry. The ABC-conjecture seems connected with many diverse and well known problems in number theory and always seems to lie on the boundary of what is known and what is unknown. We hope to elucidate the beautiful connections between elliptic curves, modular forms and the ABC-conjecture. Conjecture (ABC). Let A, B, C be non-zero, pairwise relatively prime, rational integers satisfying A + B + C = 0. Define N = Πp|ABC p to be the squarefree part of ABC. Then for every ε > 0, there exists κ(ε) > 0 such that max(|A|, |B|, |C|) < κ(ε)N1+ε. A weaker version of the ABC-conjecture (with the same notation as above) may be given as follows. Conjecture (ABC) (weak). For every ε > 0, there exists κ(ε) > 0 such that |ABC| 1/3 < κ(ε)N1+ε. つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/538
539: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/17(土) 16:31:24.91 ID:02Kfs2KS >>538 つづき P7 §4. Conjectures which are equivalent to ABC. Conjecture. (Szpiro, 1981) Let E be an elliptic curve over Q which is a global minimal model with discriminant Δ and conductor N. Then for every ε > 0, there exists κ(ε) > 0 such that Δ < κ(ε)N6+ε. We show that Szpiro’s conjecture above is equivalent to the weak ABC-conjecture. Let A, B, C be coprime integers satisfying A + B + C = 0 and ABC 6= 0. Set N = Πp|ABCp. Consider the Frey-Hellegouarch curve EA,B : y2 = x(x - A)(x + B). A minimal model for EA,B has discriminant (ABC)2・ 2-s and conductor N ・ 2-t for certain absolutely bounded integers s, t, (see Frey [F1]). Plugging this data into Szpiro’s conjecture immediately shows the equivalence. [F1] FREY, G., Links between stable elliptic curves and certain diophantine equations, Annales Universiatis Saraviensis, Vol 1, No. 1 (1986), 1-39. [F2] FREY, G., Links between elliptic curves and solutions of A-B=C, Journal of the Indian Math. Soc. 51 (1987), 117-145. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1592654877/539
540: ぷっちゃん [sage] 2020/10/17(土) 17:23:37.39 ID:QjI40yYH >>538 モジュラー形式も楕円曲線も理解できないシロウトには無縁だね コピペしても無駄じゃね? http://rio2016.5ch.net/test/read.cgi/math/1592654877/540
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s