[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
186: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/19(日) 17:47:17.30 ID:2Y0qBKwb >>185 つづき https://ja.wikipedia.org/wiki/%E5%BF%97%E6%9D%91%E5%A4%9A%E6%A7%98%E4%BD%93 志村多様体(Shimura variety)とは代数多様体であってモジュラー曲線の高次元化とみなせるような整数論で重要な対象である。 歴史 「志村多様体」と言う命名はピエール・ドリーニュ(Pierre Deligne)が導入し、彼は志村理論の中で独立した抽象的な形をしている部分の研究を推し進めた。ドリーニュの定式化では、志村多様体はホッジ構造のあるタイプのパラメータ空間である。このようにして、彼らは、レベル構造を持つ楕円曲線のモジュライ空間がそうであったように、モジュラ曲線の自然に高次元への一般化を作り出した。 例 d = 1 (例えば、F = Q や D ◯x R =〜 M2(R))のとき、D× の十分小さな算術的部分群(英語版)(arithmetic subgroup)を固定すると、志村曲線を得ることができ、この構成から得られる曲線は既にコンパクトである(すなわち、射影的)。 明らかに方程式が知られている志村曲線の例は、以下の括弧の中の種数のフルヴィッツ曲線(英語版)(Hurwitz curve)である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/186
187: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/19(日) 17:48:03.31 ID:2Y0qBKwb >>186 つづき https://en.wikipedia.org/wiki/Shimura_variety Shimura variety In number theory, a Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over Q. Shimura varieties are not algebraic varieties but are families of algebraic varieties. Shimura curves are the one-dimensional Shimura varieties. History In Deligne's formulation, Shimura varieties are parameter spaces of certain types of Hodge structures. Thus they form a natural higher-dimensional generalization of modular curves viewed as moduli spaces of elliptic curves with level structure. Role in the Langlands program Shimura varieties play an outstanding role in the Langlands program. The prototypical theorem, the Eichler?Shimura congruence relation, implies that the Hasse?Weil zeta function of a modular curve is a product of L-functions associated to explicitly determined modular forms of weight 2. Indeed, it was in the process of generalization of this theorem that Goro Shimura introduced his varieties and proved his reciprocity law. Zeta functions of Shimura varieties associated with the group GL2 over other number fields and its inner forms (i.e. multiplicative groups of quaternion algebras) were studied by Eichler, Shimura, Kuga, Sato, and Ihara. 以上 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1592654877/187
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s