[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
185: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/19(日) 17:46:31.28 ID:2Y0qBKwb >>166 追加 ”Shimura curves” http://www.math.columbia.edu/~chaoli/ Chao Li's homepage http://www.math.columbia.edu/~chaoli/docs/ShimuraCurves.html Shimura curves In the 60s, Shimura studied certain algebraic curves as analogues of classical modular curves in order to construct class fields of totally real number fields. These curves were later coined "Shimura curves" and vastly generalized by Deligne. We will take a tour of the rich geometry and arithmetic of Shimura curves. Along the way, we may encounter tessellations of disks, quaternion algebras, abelian surfaces, elliptic curves with CM, Hurwitz curves ... and the answer to life, the universe and everything. [-] Contents Review of Modular Curves Shimura curves Moduli interpretation and class fields Hurwitz curves Briefly speaking, Shimura curves are simply one-dimensional Shimura varieties. I have accomplished my trivial notion task because I have told you a trivial notion. But obviously it does not help much if you do not know what the term Shimura varieties means. It only takes 5 chapters in Milne's notes in order to define them ? not too bad ? but initially Shimura invented them really because they are natural analogues of classical modular curves. https://math.dartmouth.edu/~jvoight/articles/shimura-clay-proceedings-071707.pdf Shimura curve computations John Voight 1991 Mathematics Subject Classification. Abstract. We introduce Shimura curves first as Riemann surfaces and then as moduli spaces for certain abelian varieties. We give concrete examples of these curves and do some explicit computations with them. 1. Introduction: modular curves つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/185
186: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/19(日) 17:47:17.30 ID:2Y0qBKwb >>185 つづき https://ja.wikipedia.org/wiki/%E5%BF%97%E6%9D%91%E5%A4%9A%E6%A7%98%E4%BD%93 志村多様体(Shimura variety)とは代数多様体であってモジュラー曲線の高次元化とみなせるような整数論で重要な対象である。 歴史 「志村多様体」と言う命名はピエール・ドリーニュ(Pierre Deligne)が導入し、彼は志村理論の中で独立した抽象的な形をしている部分の研究を推し進めた。ドリーニュの定式化では、志村多様体はホッジ構造のあるタイプのパラメータ空間である。このようにして、彼らは、レベル構造を持つ楕円曲線のモジュライ空間がそうであったように、モジュラ曲線の自然に高次元への一般化を作り出した。 例 d = 1 (例えば、F = Q や D ◯x R =〜 M2(R))のとき、D× の十分小さな算術的部分群(英語版)(arithmetic subgroup)を固定すると、志村曲線を得ることができ、この構成から得られる曲線は既にコンパクトである(すなわち、射影的)。 明らかに方程式が知られている志村曲線の例は、以下の括弧の中の種数のフルヴィッツ曲線(英語版)(Hurwitz curve)である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/186
188: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/19(日) 17:53:16.29 ID:2Y0qBKwb >>185 ”Shimura curves”は、志村多様体の1次元版か でも、複素1次元ぽいな ”ピエール・ドリーニュ(Pierre Deligne)が導入し、・・彼らは、レベル構造を持つ楕円曲線のモジュライ空間がそうであったように、モジュラ曲線の自然に高次元への一般化を作り出した。” とあるから、楕円曲線を拡張したものかね?(^^ ” Zeta functions of Shimura varieties associated with the group GL2 over other number fields and its inner forms (i.e. multiplicative groups of quaternion algebras) were studied by Eichler, Shimura, Kuga, Sato, and Ihara.” Sato=佐藤幹夫かな? http://rio2016.5ch.net/test/read.cgi/math/1592654877/188
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s