[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
167: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/17(金) 17:54:41.40 ID:02nx2tCZ >>166 つづき A classical construction of Frey [36] shows that Szpiro’s conjecture implies the abc conjecture: To a triple of coprime positive integers a, b, c with a + b = c one associates the Frey-Hellegouarch elliptic curve Ea,b,c given by the affine equation y^2 = x(x ? a)(x + b). Then ΔE and NE are equal to (abc) ^2 and rad(abc) respectively, up to a bounded power of 2 (cf. Section 3 for details and references). Thus, Szpiro’s conjecture in the case of Frey-Hellegouarch elliptic curves implies the abc conjecture as stated above. 3. Review of the classical modular approach Given a triple a, b, c of coprime positive integers with a + b = c, the Frey-Hellegouarch elliptic curve Ea,b,c is defined by the affine equation y^2 = x(x - a)(x + b). One directly checks that Ea,b,c is semi-stable away from 2. Furthermore (cf. p.256-257 in [89]), ΔEa,b,c = 2^s(abc)^2 and NEa,b,c = 2^trad(abc) for integers s, t with -8 <= s <= 4 and -1 <= t <= 7. See [28] for a detailed analysis of the local invariants at p = 2 (possibly after twisting Ea,b,c by -1). From here, it is clear that Conjecture 1.1 implies Conjecture 1.2 and that any partial result for Conjecture 1.1 which applies to Frey-Hellegouarch elliptic curves yields a partial result for the abc conjecture. 18. A modular approach to Szpiro’s conjecture over number fields References [29] L. Dieulefait, N. Freitas, Base change for elliptic curves over real quadratic fields. Comptes Rendus Mathematique 353.1 (2015): 1-4. [89] J. Silverman, The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009. xx+513 pp. ISBN: 978-0-387-09493-9 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1592654877/167
168: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/17(金) 17:58:44.76 ID:02nx2tCZ >>167 訂正 elliptic curve Ea,b,c given by the affine equation y^2 = x(x ? a)(x + b). ↓ elliptic curve Ea,b,c given by the affine equation y^2 = x(x - a)(x + b). 補足 Given a triple a, b, c of coprime positive integers with a + b = c, the Frey-Hellegouarch elliptic curve Ea,b,c is defined by the affine equation y^2 = x(x - a)(x + b). One directly checks that Ea,b,c is semi-stable away from 2. Furthermore (cf. p.256-257 in [89]), ΔEa,b,c = 2^s(abc)^2 and NEa,b,c = 2^trad(abc) for integers s, t with -8 <= s <= 4 and -1 <= t <= 7. See [28] for a detailed analysis of the local invariants at p = 2 (possibly after twisting Ea,b,c by -1). とあるから NEa,b,c = 2^t*rad(abc) 導手NEa,b,cが、根基 rad(abc) に2^tを掛けたものになるということみたいだね http://rio2016.5ch.net/test/read.cgi/math/1592654877/168
170: 132人目の素数さん [sage] 2020/07/17(金) 18:56:01.90 ID:tciMsXCh >>166-169 別人が全く別の方法でABC予想を証明しても 望月の証明が正しい証拠にはならんが そんなことも分からん🐎🦌なのか? http://rio2016.5ch.net/test/read.cgi/math/1592654877/170
171: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/17(金) 23:34:12.87 ID:kAj+yiGd >>167 >[89] J. Silverman, The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer, >Dordrecht, 2009. xx+513 pp. ISBN: 978-0-387-09493-9 PDFが落ちていた これは、参考になるな (これ、タネ本やね) http://www.pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf Graduate Texts in Mathematics 106 Joseph H. Silverman The Arithmetic of Elliptic Curves Second Edition 2009 http://rio2016.5ch.net/test/read.cgi/math/1592654877/171
172: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/18(土) 13:03:06.66 ID:ywyns0bH >>167 訂正 [29] L. Dieulefait, N. Freitas, Base change for elliptic curves over real quadratic fields. Comptes Rendus Mathematique 353.1 (2015): 1-4. ↓ [28] F. Diamond, K. Kramer, Modularity of a family of elliptic curves. Math. Res. Lett. 2 (1995), no. 3, 299-304. 追加 See [28] for a detailed analysis of the local invariants at p = 2 (possibly after twisting Ea,b,c by -1). ↓ これですね https://www.intlpress.com/site/pub/files/_fulltext/journals/mrl/1995/0002/0003/MRL-1995-0002-0003-a006.pdf Mathematical Research Letters 2, 299?304 (1995) MODULARITY OF A FAMILY OF ELLIPTIC CURVES Fred Diamond and Kenneth Kramer http://rio2016.5ch.net/test/read.cgi/math/1592654877/172
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s