[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
11: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/21(日) 08:08:24.19 ID:W0WIc7wX >>10 つづき ・ザリスキの主定理: https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%B9%E3%82%AB%E3%83%BC%E3%83%BB%E3%82%B6%E3%83%AA%E3%82%B9%E3%82%AD オスカー・ザリスキ 主な業績は、ザリスキ位相の導入やザリスキの主定理(英語版)の証明を含む可換環論と代数幾何の融合である。 弟子に、ダニエル・ゴーレンシュタイン、広中平祐、ミハイル・アルティン、デヴィッド・マンフォード、ロビン・ハーツホーンら著名な数学者がたくさんおり、優れた指導者でもあった。 https://en.wikipedia.org/wiki/Zariski%27s_main_theorem Zariski's main theorem In algebraic geometry, Zariski's main theorem, proved by Oscar Zariski (1943), is a statement about the structure of birational morphisms stating roughly that there is only one branch at any normal point of a variety. It is the special case of Zariski's connectedness theorem when the two varieties are birational. Zariski's main theorem can be stated in several ways which at first sight seem to be quite different, but are in fact deeply related. Some of the variations that have been called Zariski's main theorem are as follows: 略 The name "Zariski's main theorem" comes from the fact that Zariski labelled it as the "MAIN THEOREM" in Zariski (1943). 略 つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/11
12: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/21(日) 08:09:07.81 ID:W0WIc7wX >>11 つづき ・チェボタレフの密度定理: https://en.wikipedia.org/wiki/Chebotarev%27s_density_theorem Chebotarev's density theorem Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field {\displaystyle \mathbb {Q} of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in (Tschebotareff 1926). Contents 1 History and motivation 2 Relation with Dirichlet's theorem 3 Formulation 4 Statement 4.1 Effective Version 4.2 Infinite extensions 5 Important consequences つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/12
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.048s