[過去ログ]
IUTを読むための用語集資料集スレ (1002レス)
IUTを読むための用語集資料集スレ http://rio2016.5ch.net/test/read.cgi/math/1592654877/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
61: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/29(月) 07:17:58.73 ID:zK2xtwvj >>60 追加 これは知っておいた方がいいかも https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%AF%E3%83%B3%E3%82%AB%E3%83%AC%E8%A8%88%E9%87%8F ポワンカレ計量 (抜粋) 3 平面から円板への等角写像 ポアンカレ上半平面はポアンカレ円板上にメビウス変換 w=e^{iΦ} {z-z_0}/{z-z ̄_0} によって等角的に写すことができる。ここで w は、上半平面上の点 z に対応する単位円板上の点である。 この写像において、定数 z0 は上半平面上の任意の点とすることができる(この点が単位円板の中心に写る)。 実軸 Im?z =0 は単位円板の周 |w| = 1 に写る。また、実定数 φ は任意に決まった量だけ円板を回転させるために用いられる。 虚数単位 i を円板の中心に、0 を円板の最下点に写す標準写像(標準座標系)は w= {iz+1}/{z+i} で与えられる。 http://rio2016.5ch.net/test/read.cgi/math/1592654877/61
62: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/29(月) 07:29:59.79 ID:zK2xtwvj 上半平面 H は、良く出てくる 双曲幾何と関連しています https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%AF%E3%83%B3%E3%82%AB%E3%83%AC%E3%81%AE%E4%B8%8A%E5%8D%8A%E5%B9%B3%E9%9D%A2%E3%83%A2%E3%83%87%E3%83%AB ポワンカレの上半平面モデル 半平面模型の星型正七角形による敷詰 https://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Poincare_halfplane_heptagonal_hb.svg/400px-Poincare_halfplane_heptagonal_hb.svg.png 非ユークリッド幾何学におけるポワンカレ半平面模型(はんへいめんもけい、英: Poincare half-plane model)は、上半平面(以下 H と記す)にポワンカレ計量と呼ばれる計量をあわせて考えたもので、二次元双曲幾何学のモデルを形成する。 名称はアンリ・ポワンカレに因むものだが、そもそもはベルトラミが、クライン模型・(リーマンによる)ポワンカレ円板模型とともに、双曲幾何学がユークリッド幾何学に無矛盾等価(英語版)であることを示すために用いたものである。円板模型と半平面模型とは共形写像のもとで同型である。 目次 1 対称性の群 2 等距対称性 3 測地線 対称性の群 射影線型群 PGL(2,C) はリーマン球面に一次分数変換で作用する。この群の部分群で上半平面 H を H 自身の上に移すものは、すべての係数が実数であるような変換全体の成す群 PSL(2, R) で、その作用は上半平面上推移的かつ等距ゆえ、上半平面はこの作用に関する等質空間となる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1592654877/62
63: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/29(月) 07:30:36.01 ID:zK2xtwvj >>62 つづき 上半平面に一次分数変換で作用し、かつその双曲距離を保つリー群としては、近しい関係にあるものが4つ存在する。 ・特殊線型群 SL(2, R): 成分が実数の 2 × 2-行列でその行列式が 1 であるもの全体の成す群。多くの文献で、実際には PSL(2, R) を意味するところをしばしば SL(2, R) と言っている場合があるので注意。 ・群 S*L(2, R): 成分が実数の 2 × 2-行列でその行列式が 1 または ? 1 であるもの全体の成す群。SL(2, R) はこの群の部分群である。 ・射影特殊線型群 PSL(2, R) = SL(2, R)/{±I}: SL(2, R) に属する行列を単位行列の ±1-倍を掛ける違いを除いて考えた同値類全体の成す群。 ・群 PS*L(2, R) = S*L(2, R)/{±I} = PGL(2, R): 群 S*L(2, R) に属する行列を同様に単位行列の ±1-倍を掛ける違いを除いて考えた同値類全体の成す群はそれ自身射影群である。PSL(2, R) は指数 2 の正規部分群を含み、それによるその部分群自身とは異なるもう一方の剰余類は、成分が実数の 2 × 2-行列で単位行列の ±1-倍を掛ける違いを除いてその行列式が ?1 となるもの全体の成す集合である。 ポワンカレ模型におけるこれらの群の関係は以下のようなものである。 ・しばしば Isom(H) と書かれる H の等距変換全体の成す群は PS*L(2,R) に同型である。これは向きを保つものも逆にするものも含まれている。向きを逆にする変換(ミラー変換)は z→ -z ̄ である。 ・しばしば Isom+(H) と書かれる H の向きを保つ等距変換全体の成す群は PSL(2, R) に同型である。 等距変換群の重要な部分群にフックス群がある。 モジュラー群 SL(2,Z) を考えることもよくある。この群は二つの面で重要である。ひとつは、それが 2 × 2 の格子点の成す正方形の対称性の群であり、したがってモジュラー形式や楕円函数のような正方格子上に周期を持つ函数には、その格子から SL(2, Z)-対称性が継承されることである。もうひとつは、SL(2, Z) はもちろん SL(2,R) の部分群なので、その双曲的振舞いも持っていることである。特に SL(2, Z) は双曲平面を等価なポワンカレ領域の胞体に分割することができる。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1592654877/63
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.048s