[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
737: 2020/11/04(水)06:49 ID:26WHSv4q(1/16) AAS
AA省
739(1): 2020/11/04(水)06:53 ID:26WHSv4q(2/16) AAS
>>735
>「ωがシングルトンなら、その要素はω−1 」とか、意味わからん
じゃ、ωの唯一の要素となる順序数xってズバリなんですか?
意味わからんのは、◆yH25M02vWFhPさん、あなたですよ あ・な・た
ωからnへのいかなる∋降下列も、真っ先にそのxを通りますよね?
だってωの要素はxしかないんですから
ω∋x∋・・・∋n
省1
740: 2020/11/04(水)07:09 ID:26WHSv4q(3/16) AAS
そもそもωにω−1は存在しません
そしてノイマンのωはそもそもシングルトンじゃないから
ω−1が存在しなくても無問題です
問題はツェルメロのωがシングルトンだとしたときです
実はそう考えた瞬間、ωは後続順序数で、その前者は
ωの唯一の要素と考えざるを得ません
またωが有限集合だとしても、その要素中の最大元が
省2
745: 2020/11/04(水)18:32 ID:26WHSv4q(4/16) AAS
>>741
>ω−1が、考えられないにも関わらず、
>「ω−1を考えたら矛盾」とか、それって変
文章を正しく読もうな
ωがシングルトンなら、その唯一の要素である順序数は
存在しないはずのω−1と考えざるをえないから矛盾
746: 2020/11/04(水)18:33 ID:26WHSv4q(5/16) AAS
>>742
1および2については◆yH25M02vWFhPの読み間違い
すでに上記で指摘済み 理解できるまで読み返されたい
さて
>ノイマンのωにしろ、Zermeloのシングルトンによるωしろ、
>結局は抽象的な現代数学の思念の産物なのです
抽象的という言葉で何をいいたい?
省5
747: 2020/11/04(水)18:34 ID:26WHSv4q(6/16) AAS
>>742
>直観的な理解は、極限順序数の”極限”から、
>自然数n→∞の極限として理解することだろうね
>つまり、シングルトンという性質(=濃度1)を持つ
>”極限”の順序数(としての集合)として、ωを理解することだ
極限という言葉で
「n+1が{n}というシングルトンなんだから、ωもシングルトンの筈だ」
省13
748: 2020/11/04(水)18:36 ID:26WHSv4q(7/16) AAS
>>743
>コーシー列
>ωはリーマン球面の北極点に例えることができる
>Zermeloのシングルトンによるωも、ある種の一点コンパクト化
>で、この種コンパクト化は後者関数の選び方にはよらない
何をいってもωはシングルトンにはならんよ
>・普通は、”自然数n→∞の極限”とか、”コンパクト化”は書かない。避ける
省13
749: 2020/11/04(水)18:39 ID:26WHSv4q(8/16) AAS
>>744
>ωとは何者よ?
>一つの理解は、S(n)のn→∞の極限として理解すること。
>もう一つは、ωをある種の”コンパクト化”として理解すること
>いずれも、可能な限り後者関数の性質を受け継ぐものとしてね。
ωは「後者関数の性質を受け継ぐ」と思い込んでるのが誤り
>それは、コーシー列とか、リーマン球面の北極点に同じだよ
省20
750(1): 2020/11/04(水)18:41 ID:26WHSv4q(9/16) AAS
>>744
(ωはシングルトン)
>こう解釈して何が悪い?
矛盾を導く つまり最低最悪
>抽象化された現代数学での
>有理数以上における 数学的概念の対象って、
>みんなそんなものでしょ?
省17
752: 2020/11/04(水)19:24 ID:26WHSv4q(10/16) AAS
>濃度が1なる集合ωが存在すると考えるだけのこと
それが矛盾を導く
ωの唯一の要素は当然順序数
もしそうでなかったら矛盾
そして、ωの唯一の要素xに対して
ω∈y∈xとなる、xと異なるyも存在しない
省6
753: 2020/11/04(水)19:29 ID:26WHSv4q(11/16) AAS
>>751
>集合列 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............で、
上記の場合、0とω以外の後続順序数はシングルトン
しかし、そうでない順序数はシングルトンではない
これが答え 0以外の全てがシングルトンと考える
◆yH25M02vWFhPは論理的思考力ゼロのidiot!
・・・とMara Papiyasならいうだろう
756(1): 2020/11/04(水)22:11 ID:26WHSv4q(12/16) AAS
>>754
>N‗n:={S‗n}={0,1,2,・・・,n}
間違ってます
N‗0:={}
N‗n:={N‗0,…,N‗n-1}
N_ω:={N_0,…}
>Singl_n:={・・・{0}・・・}
省9
757: 2020/11/04(水)22:14 ID:26WHSv4q(13/16) AAS
>正しいZermeloのωは、実は
>{{},{{}},{{{}}},{{{{}}}},…}
>という無限集合
実は上記に限らない
自然数の無限集合でありさえすればいい
758(1): 2020/11/04(水)22:16 ID:26WHSv4q(14/16) AAS
さらにいうと、Zermeloのnはシングルトンでなくてもいい
n-1を最大元とする自然数の有限集合ならなんでもいい
759: 2020/11/04(水)22:20 ID:26WHSv4q(15/16) AAS
>>758
>n-1を最大元とする自然数の有限集合ならなんでもいい
ここまでいくと、Zermeloの順序数とNeumannの順序数は
根本的には違わないことが分かる
760: 2020/11/04(水)22:25 ID:26WHSv4q(16/16) AAS
つまり
0: 空集合
1: 0が最大元となる有限集合
2: 1が最大元となる有限集合
3: 2が最大元となる有限集合
・・・
とすればいい
省3
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.051s