[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
189(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/07(月)06:37 ID:2lTTrhZd(2/3) AAS
まとめます
1)正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、
”無限下降列である x∋x1∋x2∋・・・ ”は
底抜けの最小元を持たない無限単調減少列の意味です
ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです
(>>159-160ご参照)
2)空集合から、後者関数を適用し、それに無限公理を適用して、自然数Nを構成する
省26
190(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/07(月)06:37 ID:2lTTrhZd(3/3) AAS
>>189
つづき
注釈
^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。
その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。
したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
省5
191(1): 2019/10/07(月)08:34 ID:3bkiY8iJ(1/3) AAS
>>189-190
全く証明になってないですね。
結局Ωは何になるんですか?
193(4): 現代数学の系譜?雑談 ◆e.a0E5TtKE 2019/10/07(月)14:21 ID:ez50Rnmf(1/3) AAS
>191-192
(>>189に関連して)
1)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成は、正則性公理に反しない
たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
それはいわゆる自然数Nよりも、余計な元、
省2
311(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)22:08 ID:0oc9Ztsl(26/28) AAS
>>309
>{{…}} は正則性公理に反するのでZF内には存在できません
(>>189より)
正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、
”無限下降列である x∋x1∋x2∋・・・ ”は
底抜けの最小元を持たない無限単調減少列の意味です
ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです
省2
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s