[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
173(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)15:56 ID:d8OQiN+r(18/27) AAS
>>154 追加
外部リンク:unaguna.jp
U-naguna
シリーズ: 集合論の言葉を使おう (準備編) >
集合論の言葉による自然数の表現
(抜粋)
n の次の自然数を n∪{n} とする利点としては
省10
174: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)15:57 ID:d8OQiN+r(19/27) AAS
>>173
つづき
数学的帰納法
さて、ここで1つ根本的な問いとして「今作った ω は自然数集合として機能するのか」を問うてみる。言い換えると、「ω に属するモノだけで作られる自然数と言う構造が、素朴な意味で自然数と呼んでいるモノが担っていた役割をすべてこなせるのか」ということだ。
ただ、この問題にまじめに解答しようとしたら、先ほど棚上げした ω の存在証明に触れなくてはならない。そこで、ここでもやはり理屈を抜きにして「ω は自然数が果たすべき役割をひととおり果たせる」と結論だけ述べる。
余談
ここで用いられている自然数の定義はよく知られ用いられている。それを前提として下の記述を見てみよう。
省5
175(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)16:07 ID:d8OQiN+r(20/27) AAS
>>102 追加
>(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and
この”for any object a, of the singleton set {a}”
は、ZFCでは、対の公理だね
a → {a}が言える
(参考)
外部リンク:ja.wikipedia.org
省19
176: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)16:13 ID:d8OQiN+r(21/27) AAS
>>175 補足
ツェルメロの the singleton set {a} の公理
あるいは
ZFCの対の公理より
任意のaから、{}を一つ加えた集合{a}の存在が言える
これは、当たり前のことだが、公理だから、普通に考えて、無制限(^^
正則性公理の無限降下列に反するだ〜?
省1
177: 2019/10/06(日)16:32 ID:9PvOfF3Z(9/10) AAS
思った通り逃げましたねw
いいですよ?逃げても
その代わり「ωから始まる∈無限降下列の存在」は間違いだったと認めて下さいね
第2項は答えないが間違いも認めない は駄々っ子のすることです
幼稚園からやり直しますか?
178: 2019/10/06(日)18:31 ID:Gc2q5hFd(2/4) AAS
>>162
> >>151 補足
> ツェルメロの自然数構成で
> 0:Φ
> 1:{Φ}
> 2:{{Φ}}
> ・
省15
179: 2019/10/06(日)19:15 ID:9PvOfF3Z(10/10) AAS
> ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う)
↑
自分で何言ってるか分かってる?
180(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:18 ID:d8OQiN+r(22/27) AAS
>>175
商集合は、分出公理を使うのか
外部リンク:unaguna.jp
U-naguna
シリーズ: 集合論の言葉を使おう (準備編) > 同値関係と同値類
(抜粋)
同値類
省22
181(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:20 ID:d8OQiN+r(23/27) AAS
>>180
つづき
定義 5 (商集合).R を x 上の同値関係とする。このとき、「R による同値類がすべて属し、それ以外のモノが属さない集合」である
{y∈P(x)?∃a[a∈x∧y=[a]R]}
を商集合とよび x/R と書く。
商集合は直感的な内包的記法を使えば
{[a]⊂x?a∈x}
省14
182(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:20 ID:d8OQiN+r(24/27) AAS
>>181
つづき
数学の議論では、変数 i を含む項 T と、集合 I があるとき、i∈I に対する T 全体からなる“集合”を考える、ということがしばしばあります。
大抵の場合、i∈I のとき、T は i に無関係なある集合 A に属しているので、これを集合と見なすことは分出公理により正当化されるのですが、順序数の議論のような、集合論として“きわどい分野”での議論を行うときは、このような条件が成り立っていない場合があります。
ところで、この場合の項 T は、集合 I の元 i に対してある対象 T を表しており、i に T を対応させる関数が与えられたとみなすことができます。
そこで、集合 I の関数による像 { T | i∈I } となる集合が存在すると言う意味の置換公理:
[∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) ] → ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ P(x, y) )]
省7
183: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:24 ID:d8OQiN+r(25/27) AAS
>>181 補足
> さて、集合の概念で、最も便利な性質、すなわち任意に命題 P が与えられたとき、P を満たす x 全体の集合、というものを考えたいのですが、これをそのまま公理にしたのでは、Russellのパラドクスにより矛盾が生じてしまいます。
> そこで、通常の数学で、このような集合を考えたいときには、いつもどのような状況にあるかということを考えると、既に集合であることがわかっている a の元のうち、P を満たすようなもの全体からなる集合、というものを考えていることがわかります。そこで、分出公理:
思うに、分出公理とか置換公理を、あまり強力にして、なんでもできることにすると、
Russellのパラドクスのようなことを生じるおそれがある
だが、分出公理とか置換公理の力を制限すると、
選択公理のように、無限の集合を扱う公理を必要とするということだろうね(^^
184(1): 2019/10/06(日)20:30 ID:Gc2q5hFd(3/4) AAS
>>182
以上ってまさかこれで>>162の証明の不足部分が補えたという意味?
ではないよね?
185(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:32 ID:d8OQiN+r(26/27) AAS
>>172
>>ええ、上記いずれの場合も、第1項 a1=ω はありますよ
>私が聞いてるのは第2項ですw
質問に対して、質問を返して悪いが(^^
1)下記の、順序数の列
0, 1, 2, 3, . . . , ω を認めますか? Y/N
2)もし、Yesの場合
省14
186(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)20:33 ID:d8OQiN+r(27/27) AAS
>>184
>>185
187(1): 2019/10/06(日)20:41 ID:Gc2q5hFd(4/4) AAS
>>186
え?>>185がなんですか?
>>162の証明の不足部分はまだ一つも埋められてませんよ?
188: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/07(月)06:00 ID:2lTTrhZd(1/3) AAS
>>187
ええ、どうぞ、>>185にお答え下さい
それに合わせて、>>162の補足説明を、させて頂きます
それまでは、質問者には、常に>>185の逆質問があることを、ご了承ください
189(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/07(月)06:37 ID:2lTTrhZd(2/3) AAS
まとめます
1)正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、
”無限下降列である x∋x1∋x2∋・・・ ”は
底抜けの最小元を持たない無限単調減少列の意味です
ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです
(>>159-160ご参照)
2)空集合から、後者関数を適用し、それに無限公理を適用して、自然数Nを構成する
省26
190(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/07(月)06:37 ID:2lTTrhZd(3/3) AAS
>>189
つづき
注釈
^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。
その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。
したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
省5
191(1): 2019/10/07(月)08:34 ID:3bkiY8iJ(1/3) AAS
>>189-190
全く証明になってないですね。
結局Ωは何になるんですか?
192(3): 2019/10/07(月)08:54 ID:3bkiY8iJ(2/3) AAS
もう少し具体的に聞きましょう。
確かに順序数とは整列順序集合の同値類の完全代表系の一つであります。
まず通常のノイマンの構成による順序数全体をOrdとします。
Ordの元xに対しツェルメロ構成によるx番目の順序数をZ(x)としてこれを定めるなら、
Z(0)=0,
Z(x+1)={Z(x)}
としてx<ωまではいいでしょう。
省3
193(4): 現代数学の系譜?雑談 ◆e.a0E5TtKE 2019/10/07(月)14:21 ID:ez50Rnmf(1/3) AAS
>191-192
(>>189に関連して)
1)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成は、正則性公理に反しない
たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
それはいわゆる自然数Nよりも、余計な元、
省2
194(2): 2019/10/07(月)15:17 ID:3bkiY8iJ(3/3) AAS
>>193
1) 無限上昇列が正則性公理に反しないでしょ?
そんな事私は主張した事ないですよ?
2) もちろん認めてますよ?というか私自身が可能である事の証明載せましたけど?
それと同じことをツェルメロ構成でも出来る事を示して下さいと言ってるんですけど?
195(1): 現代数学の系譜?雑談 ◆e.a0E5TtKE 2019/10/07(月)16:08 ID:ez50Rnmf(2/3) AAS
>>194
(引用開始)
1) 無限上昇列が正則性公理に反しないでしょ?
そんな事私は主張した事ないですよ?
2) もちろん認めてますよ?というか私自身が可能である事の証明載せましたけど?
(引用終り)
なるほど、ID:Gc2q5hFdさんの >>127 のことですかね
省18
196(2): 2019/10/07(月)18:01 ID:cEmWDLJd(1/2) AAS
> いわゆる自然数Nよりも、余計な元、
>、超限順序数に属するべき(有限でない)元が
> 生成され、含まれていることに同意しますか? Y/N
> に対して、Yだと回答されたということですね
いわゆる無限公理によって条件
0∈E、∀x (x∈E⇒x∪{x}∈E)
を満たすEの存在は認めます。
省9
197(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/07(月)18:56 ID:ez50Rnmf(3/3) AAS
>>196
まず、ID:cEmWDLJdさん、レスありがとう
だが、>>194の ID:3bkiY8iJと、ID変わっていますよね
まあ、同一人物らしいとは思うけれど、自覚されてますか?
さて
(引用開始)
> いわゆる自然数Nよりも、余計な元、
省20
198: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:03 ID:rpPbPz0q(1/7) AAS
やれやれ
「ハゲネズミ」の由来について、HPのリンク張ろうとしたら
NGワードで規制食らってやっと復活したぜw
>>161
>ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい
>>163 馬鹿曰く
>その質問は、哀れな素人さんの無限に関する質問に類似
省13
199: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:05 ID:rpPbPz0q(2/7) AAS
>>185 馬鹿の逆質問
>1)下記の、順序数の列
> 0, 1, 2, 3, . . . , ω を認めますか? Y/N
>2)もし、Yesの場合
> 0, 1, 2, 3, . . . , ω で、ωの一つ左の順序数は、何ですか? あなた、答えられますか?w
>3) もし、Noの場合、現代数学の無限の概念を認めないということですか? Y/N
1)認める
省25
200: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:06 ID:rpPbPz0q(3/7) AAS
>>192
>Ordの元xに対し
>ツェルメロ構成によるx番目の順序数をZ(x)として
>これを定めるなら、
>Z(0)=0,
>Z(x+1)={Z(x)}
>としてx<ωまではいいでしょう。
省12
201(1): 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:12 ID:rpPbPz0q(4/7) AAS
>>193
>1)ツェルメロ構成での任意aの後者関数;
> suc(a) := {a}による構成は、正則性公理に反しない
> たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
Y
>2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
> 無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
省31
202: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:21 ID:rpPbPz0q(5/7) AAS
>>201でいってるのは、
{}∈X∧(∀x∈X⇒{x}∈X)
を満たす集合が、
空集合でも単一要素の集合でもない集合を
要素としても全然問題ない、ということ
例えばa={{{}},{{{}}}}を要素としてもいい
但し、もしaを要素とするなら{a}も{{a}}も要素とせねばならない
省8
203: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:35 ID:rpPbPz0q(6/7) AAS
さて、今日の一曲は・・・これだ!
動画リンク[YouTube]
Emperor 最高だぜ!
204: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:49 ID:rpPbPz0q(7/7) AAS
そして、これも名曲
動画リンク[YouTube]
205(1): 2019/10/07(月)22:31 ID:cEmWDLJd(2/2) AAS
>>197
> それ、どこかで聞いたセリフかもね
> ツェルメロ以降の現代数学の100年前からの議論を、繰り返したいのですか?
そんな事はありません。
証明の全てを書く必要はありません。
そんな論文はなかなかありません。
たの論文なり教科書に載ってる結果を引用したいのなら構いません。
省7
206(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)00:10 ID:3SQHWkr4(1/5) AAS
>>205
>という形までしか許されません。私の>>18を見て下さい。
ああ、>>18をアップした人だったのかい?(^^
>たの論文なり教科書に載ってる結果を引用したいのなら構いません。
まあ、探してみるけどね
おれさ、おっちゃんみたいに、こんなバカ数学板に、ぐだぐだ記号で証明書く趣味ないんだよね
そもそもがさ、書かれた証明が初出なら、タイポとかありうるでしょ
省16
207(1): 2019/10/08(火)00:39 ID:86YyLDZA(1) AAS
>>206
> (引用開始)
> じゃあ、それ、通常の自然数で、N⊂E かつ N≠Eですね
> つまり、EはNに対して、真に大きい
> つまり、EはNに対して、余分な元を含む
認められるのはここまでです。
> つまり、Nは全ての有限の元を含むので、
省15
208: 第六天魔王 ◆y7fKJ8VsjM 2019/10/08(火)05:27 ID:bC9PKbug(1/3) AAS
>>206
>おれさ、おっちゃんみたいに、こんなバカ数学板に、
>ぐだぐだ記号で証明書く趣味ないんだよね
馬鹿はつたない日本語で数学的ウソを書く悪い趣味があるwww
それにしても>>206の日本語はヒドイな
貴様、マジで朝鮮人じゃないのか?
209: 第六天魔王 ◆y7fKJ8VsjM 2019/10/08(火)05:34 ID:bC9PKbug(2/3) AAS
AA省
210(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:22 ID:3SQHWkr4(2/5) AAS
>>207
>> つまり、Nは全ての有限の元を含むので、
>Nが全ての有限集合を含むわけないでしょ?
?
あなたは、>>127で
(引用開始)
ω' を
省23
211(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:23 ID:3SQHWkr4(3/5) AAS
>>210
つづき
ここで、現代数学の順序同型(下記)を借用しましょう
”整列順序型N’:0,1,2,・・,n,・・” は、ちょうど自然数N全体を渡り、自然数Nと順序同型です
これを認めれば、ツェルメロの整列順序型E’とノイマンの整列順序型Eとは、順序同型
全単射で、ツェルメロのΩが、ノイマンのωに対応する
よろしいでしょうか?
省16
212: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:24 ID:3SQHWkr4(4/5) AAS
>>211
つづき
外部リンク:ja.wikipedia.org
順序数
(抜粋)
順序数の大小関係に関して次が成り立つ:
5.順序数からなる空でない集合には必ず最小元が存在する。
省6
213: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:34 ID:3SQHWkr4(5/5) AAS
>>211 追加引用
下記の和積が、通常の演算と同じなんでしょうね、多分(^^
外部リンク:ja.wikipedia.org
順序型
(抜粋)
5 順序型の演算
5.1 和
省21
214(1): 2019/10/08(火)09:37 ID:ofPIORDH(1) AAS
>>210
>>211
> >>210
> つづき
>
> ここで、現代数学の順序同型(下記)を借用しましょう
> ”整列順序型N’:0,1,2,・・,n,・・” は、ちょうど自然数N全体を渡り、自然数Nと順序同型です
省20
215: 第六天魔王 ◆y7fKJ8VsjM 2019/10/08(火)19:42 ID:bC9PKbug(3/3) AAS
馬鹿は根本的に分かってないなw
だいたい、無限公理のωが
suc(a) :=a∪{a}の繰り返しだけで
出来てると思うのが馬鹿www
その証拠に
ω=a∪{a}
となるaは存在しないだろ
省6
216(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)11:48 ID:nHmzRvjt(1/5) AAS
>>214
”ここから分出公理で
{x∈E | x: finite, x: ordered inthe sence of Neumann}
という集合がとれますがコレでいらないもが削ぎ落とされて
求めるωがとれたのでした。”
↓
E''=E'\N = { x∈E' | x: transfinite, x: ordered in the sence of Zermelo }
省15
217: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)11:52 ID:nHmzRvjt(2/5) AAS
>>216
つづき
・ω (omega) is defined as the lowest transfinite ordinal number and is the order type of the natural numbers under their usual linear ordering.
・Aleph-naught, アレフ_{0}, is defined as the first transfinite cardinal number and is the cardinality of the infinite set of the natural numbers. If the axiom of choice holds, the next higher cardinal number is aleph-one, アレフ_{1}.
If not, there may be other cardinals which are incomparable with aleph-one and larger than aleph-naught. But in any case, there are no cardinals between aleph-naught and aleph-one.
The continuum hypothesis states that there are no intermediate cardinal numbers between aleph-null and the cardinality of the continuum (the set of real numbers): that is to say, aleph-one is the cardinality of the set of real numbers. (If Zermelo?Fraenkel set theory (ZFC) is consistent, then neither the continuum hypothesis nor its negation can be proven from ZFC.)
(引用終り)
省2
218: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)11:54 ID:nHmzRvjt(3/5) AAS
>>216 タイポ訂正
E'のZermelo構成の最小元として
↓
E'’のZermelo構成の最小元として
219: 2019/10/09(水)12:08 ID:0zG6excl(1) AAS
てす
220: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)12:16 ID:nHmzRvjt(4/5) AAS
おつ
221(1): 2019/10/09(水)12:34 ID:rFFSRADX(1) AAS
>>216
ダメですね。
まず
x: ordered number in the sence of Zermelo
が論理式として定義されていません。
>>18の定義にある通り、そここそがNeumannのordered numberのすごいところで多くの基礎論における順序数の構成でNeumannのスタイルが採用される所以です。
まぁ仮にそこがなんとかなったとしても
省5
222: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)15:22 ID:nHmzRvjt(5/5) AAS
>>216
>E''=E'\N
\:差集合(下記)の記号
まあ、大学では普通で、みな知っているけど
不思議に、「B − A」は使わない
多分、和集合がに、∪(カップとか読む)をつかうことから(+を使わない)、それとのバランスでしょうね(^^
外部リンク:ja.wikipedia.org
省13
223: 2019/10/09(水)19:21 ID:PFECpNHL(1) AAS
自分の言いたいことだけ言って指摘は見て見ぬふりですか やれやれ
224(6): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)23:51 ID:2o5RsZjT(1/3) AAS
>>221
議論の前提として、ある程度、標準的に認められている現代数学の成果は、認めることにしましょうね(^^
ツェルメロから、ノイマンへ至道、それは幾人もの希代の天才たちが、十年以上の歳月をかけた思考の結晶だ
こんなバカ板のバカスレで、1からの数学ゼミやったら、100年かかっても少しも進みませんぜw(゜ロ゜;
ツェルメロ構成は、順序数(3.2.2 Ordinality)については、モストフスキー崩壊理論で、一応成立(OKってこと)
但し、基数(3.2.3 Cardinality)については、これじゃだめということですよ
それ、下記の”Zermelo’s Axiomatization of Set Theory Michael Hallett”に書いてあるよ
省15
225: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)23:54 ID:2o5RsZjT(2/3) AAS
>>224
Stanford Encyclopedia of Philosophyがダブッたな
まあ、ご愛敬(^^
226(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)23:56 ID:2o5RsZjT(3/3) AAS
>>224
3.2.2 Ordinality
Thus, many of the representational problems faced by Zermelo's theory are solved at a stroke by Kuratowski's work, building as it does on Zermelo's own.
って話な(^^
227(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)00:04 ID:JCH5uyU5(1/7) AAS
>>224 訂正します
ツェルメロ構成は、順序数(3.2.2 Ordinality)については、モストフスキー崩壊理論で、一応成立(OKってこと)
↓
ツェルメロ構成は、順序数(3.2.2 Ordinality)については、Kuratowskで、一応成立(OKってこと)
(>>226より)
xxスキーとか、紛らわしいな って、オイオイ(゜ロ゜;
下記の人だろうね(^^
省13
228(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)00:09 ID:JCH5uyU5(2/7) AAS
>>227
バナフは、バナッハ空間論の人。ウラムは、物理とも関連したいたと思うよ
外部リンク:ja.wikipedia.org
ステファン・バナフ
(抜粋)
ステファン・バナフ[1](Stefan Banach, 1892年3月30日 - 1945年8月31日)はポーランドの数学者。バナッハ空間論、実解析論、関数解析学、数学基礎論などで多大な業績をのこした。
外部リンク:ja.wikipedia.org
省3
229: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)00:14 ID:JCH5uyU5(3/7) AAS
>>228
ウラム先生は、ソリトンの切っ掛けになった数値実験をした人ですね
外部リンク:ja.wikipedia.org
フェルミ・パスタ・ウラムの問題
(抜粋)
フェルミ・パスタ・ウラムの問題(ふぇるみ・ぱすた・うらむのもんだい、英: Fermi?Pasta?Ulam problem)とは、物理学における非線形な相互作用を有する格子模型におけるエネルギー分配の問題。FPU の問題とも呼ばれる。1950年代に、ロスアラモス研究所で電子計算機を用いてこの問題に取り組んだ 3 人の数理物理学者エンリコ・フェルミ、ジョン・パスタ(英語版)、スタニスワフ・ウラムに名に因む。
当初の予想では相互作用が非線形な系ではエルゴード性(英語版)によって、長時間経過後に各モードにエネルギーが等分配された熱力学的平衡状態に達するはずであったが、計算機実験の結果はそれに反し、初期状態のモードに戻る再帰現象が観測された。
省5
230(3): 2019/10/10(木)03:44 ID:64e05J/b(1/5) AAS
>>324
違います。
Zermelo ordinal number なるものが何かまだ誰も定義していません。
Z(0)=0, Z(1)={0}, Z(2)={{}},‥‥
はいいでしょう。
そのように定義したいなら定義してもいいでしょう。
ただしコレもキチンと論理式で定義しないとだめなんですよ。
省19
231: 2019/10/10(木)04:16 ID:64e05J/b(2/5) AAS
訂正
ℵ(a)=min{x| ∀y<a #x>#ℵ(y)}
です。
超限帰納法は多くの場合、後者順序数(successor ordinal number) と極限数(limit number)について別途定める必要があります。
Zermelo ordinal numberは後者順序数の場合しか定められていません。
232(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)10:48 ID:K6AlmfoH(1/5) AAS
>>230
そんな思考をしていたら、百年経っても、ノイマンを抜けないよ
もっと、巨人の肩に乗ることを考えないと
伊能 忠敬が、昔全国を回って測量し日本地図を作った
それは確かに偉業ではある
でも、我々はグーグルマップを使えば良い
外部リンク:ja.wikipedia.org
省6
233(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)10:58 ID:K6AlmfoH(2/5) AAS
>>230
念押ししておきたいが
1)おれが、定義を書けるかどうかと、
大学以上の数学として、その数学概念が確立されているかどうかは別
判断基準間違っているよ
そんな判断基準なら、現代数学の99%は消滅するじゃないw(゜ロ゜;
2)逆に、おれは、あなたを基準にしていない
省2
234: 2019/10/10(木)11:19 ID:64e05J/b(3/5) AAS
>>232
もちろん過去の偉人が証明した結果はいくらでも利用してください。
その事を非難した事はありません。
既に証明されている事実はいくら使っても結構です。
その上でΩを構成してください。
235(3): 2019/10/10(木)11:35 ID:64e05J/b(4/5) AAS
>>233
結構ですよ。
証明はわからないがこんな結果はあるというなら使っていただいて結構です。
少なくとも私は順序数に符合付ける方法
Z(0),Z(1),‥,Z(ω),Z(ω+1),‥
で
Z(0)=0
省9
236(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)18:39 ID:K6AlmfoH(3/5) AAS
>>233 補足
(参考)
外部リンク:ja.wikipedia.org
デデキント無限
(抜粋)
数学において、集合A がデデキント無限(Dedekind-infinite)である、またはデデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。つまり、A とA の真部分集合B の間に全単射が存在するということである。集合 A がデデキント無限でないとき、デデキント有限であるいう。
デデキント無限は、自然数を用いないような最初の無限の定義である。選択公理を除いたツェルメロ・フレンケルの公理系は、任意のデデキント有限集合は有限個の元を持つという意味での有限である、ということを証明するだけの強さを持たない[1]。デデキント無限以外にも、選択公理を用いない有限集合や無限集合の定義が存在する。
省15
237(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)18:40 ID:K6AlmfoH(4/5) AAS
>>236
つづき
一般化
圏論的な言葉で表現すれば、集合 A は集合の圏においてすべてのモノ射 f: A → A が同型射であるときにデデキント有限である。フォン・ノイマン正則環 R が(左あるいは右)R-加群の圏において同様の性質を持つことと、R において xy = 1 ならば yx = 1 が成り立つことは同値である。
より一般に、デデキント有限環 (Dedekind-finite ring) は、この条件(xy = 1 ならば yx = 1)を満たす環のことである。台集合がデデキント無限であっても環はデデキント有限となりうることに注意。例えば整数環。正則加群 RR がホップ的(すなわち任意の全射自己準同型が同型)であることと R がデデキント有限であることは同値である。
外部リンク[pdf]:ring-theory-japan.com
VON NEUMANN REGULAR RINGS WITH COMPARABILITY MAMORU KUTAMI Yamaguchi University 久田見 守(山口大学)第39回環論および表現論シンポジウム(2006年)
省13
238(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)18:41 ID:K6AlmfoH(5/5) AAS
>>237
つづき
上記の出どころ
外部リンク:researchmap.jp
久田見 守 researchmap
外部リンク:ring-theory-japan.com
環論ホームページ
省7
239(1): 2019/10/10(木)19:13 ID:67UjvVEp(1) AAS
>しばし待てば定義を与える
詐欺師が約束守る訳ないじゃんw
この詐欺師、今まで何度約束を破ったことかw
240: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)20:21 ID:JCH5uyU5(4/7) AAS
>>239
(引用開始)
>しばし待てば定義を与える
詐欺師が約束守る訳ないじゃんw
この詐欺師、今まで何度約束を破ったことかw
(引用終り)
?
省10
241(1): 2019/10/10(木)20:31 ID:JxHMvoEF(1/3) AAS
>>224
>それ、下記の”Zermelo’s Axiomatization of Set Theory Michael Hallett”に書いてあるよ
英語読めてる?
>VII.Infinity
>This final axiom asserts the existence of an infinitely large set which contains the empty set,
>and for each set a that it contains, also contains the set {a}.
> (Thus, this infinite set must contain ∅, {∅}, {{∅}}, ….)
省6
242(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)20:36 ID:JCH5uyU5(5/7) AAS
>>236-237
そもそも、>>235って、論点ずれていると思うよ
>>236-237に引用したように
1)そもそも、無限にもいろいろありましてw
無限を扱う公理の強さによって、多種の無限が生じ、区別ができないこともある
2)その中で、ZFCのフルパワー選択公理を採用すれば
デデキント無限などで、可算無限は、一意に決まるのです(整列可能定理でもありますし)
省15
243(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)20:42 ID:JCH5uyU5(6/7) AAS
>>241
(引用開始)
ツェルメロの自然数における無限公理は
{∅, {∅}, {{∅}}, …, }
の存在を述べているだけ
{…{∅}…}なんて全然出てこないけどな
(引用終り)
省12
244: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)20:46 ID:JCH5uyU5(7/7) AAS
「ツェルメロ構成での任意aの後者関数;suc(a) := {a}」
これを超限回(あるいは可算無限回と言っても良いだろう)繰返した存在
それ以外に何がある?
ノイマン構成に同じ
ただ、後者関数の定義が違うのみ
245(1): 2019/10/10(木)20:52 ID:JxHMvoEF(2/3) AAS
>>243
なんか、全然見当違いな方向に暴走してない?
Zermeloの自然数の延長としてωを構成すると
{∅, {∅}, {{∅}}, …, }になるって書いてある
君のいう超限回(可算無限回)繰返しなんて全然出てこない
>自然数Nには、有限の元n達が全部含まれている
>それを超える元を、無限公理は許容しているのです
省2
246: 2019/10/10(木)20:58 ID:JxHMvoEF(3/3) AAS
質問
超限回(可算無限回)繰返しっていうけど
それで出来た集合Xって
X={x}となるxを持つの?
247: 2019/10/10(木)23:14 ID:64e05J/b(5/5) AAS
これは>>245さんが正しいね
> (Thus, this infinite set must contain ∅, {∅}, {{∅}}, ….)
>The natural numbers are represented by Zermelo as by ∅, {∅}, {{∅}}, …,
>and the Axiom of Infinity gives us a set of these.
この文章は
{∅, {∅}, {{∅}}, …, }
という集合が存在することが無限公理から証明できるという意味にしか取れないね。
248: 2019/10/11(金)02:03 ID:HNYXw+8U(1/2) AAS
数学も英語もできない工業高校卒
249(1): 2019/10/11(金)03:40 ID:HNYXw+8U(2/2) AAS
(よってこの無限集合は ∅, {∅}, {{∅}}, … を含んでいなければならない。)
ツェルメロにより自然数は ∅, {∅}, {{∅}}, … と表わされおり、無限公理は
これらのうちの一つの集合を我々に与える。
{…{∅}…}? はぁ? また妄想?
250(1): 第六天魔王 ◆y7fKJ8VsjM 2019/10/11(金)06:47 ID:6s83KSTC(1/9) AAS
>>249
>ツェルメロにより自然数は ∅, {∅}, {{∅}}, … と表わされおり、
>無限公理はこれらのうちの一つの集合を我々に与える。
「ツェルメロにより自然数は ∅, {∅}, {{∅}}, … と表わされおり、
無限集合はこれらの集合を我々に与える」
でいいだろ
251(6): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/11(金)06:49 ID:aKfhohl9(1/4) AAS
>>242
メモ:現代数学の”無限”のランドスケープ
外部リンク:ja.wikipedia.org
レーヴェンハイム?スコーレムの定理
(抜粋)
レーヴェンハイム?スコーレムの定理(英: Lowenheim?Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。
そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。
省14
252(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/11(金)06:50 ID:aKfhohl9(2/4) AAS
>>251
つづき
理論が範疇的 categorical であるとは、同型の違いを除いて唯一のモデルを持つことを意味する。
この用語は1904年、オズワルド・ヴェブレンが考案したもの[1]で、その後しばらくの間、数学者らは集合論を範疇的な一階の理論で記述することで、数学の堅固な基盤を築けると考えていた。
レーヴェンハイム-スコーレムの定理はこの希望への最初の打撃となった。
なぜなら、その定理によれば無限のモデルを持つ一階の理論は範疇的にはなり得ないからである。
さらに1931年、ゲーデルの不完全性定理によって希望は完全に打ち砕かれた。
省12
253(1): 第六天魔王 ◆y7fKJ8VsjM 2019/10/11(金)06:53 ID:6s83KSTC(2/9) AAS
>>250-252
それ、安達のスレで書けよ
奴は、可算無限はともかく、非可算無限を認めたくないみたいだから
上下前次1-新書関写板覧索設栞歴
あと 749 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s