[過去ログ] 高校数学の質問スレ Part434 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
504: 2024/04/24(水)22:25 ID:vygCixOx(9/12) AAS
>>500
失礼しました。こちらの計算ミスでした。
505: 2024/04/24(水)22:35 ID:vygCixOx(10/12) AAS
K確定以後の点の命名は青色で表記した。
画像リンク[gif]:i.imgur.com
BK=AB/3は既出、∴ CJ=DC/3
506
(1): 2024/04/24(水)22:44 ID:vygCixOx(11/12) AAS
>>499
三角形の頂点が正方形の3点にあるとき
S=1/2
最大内角θ=π/2
Tθ= π/4 = 0.785398
の方が大きくない?
507
(2): 2024/04/24(水)22:55 ID:c7p8gYL7(1) AAS
>>495
う~んそれだと十分条件ですね
508: 2024/04/24(水)23:02 ID:j45PZ9WY(2/2) AAS
>>500
素晴らしい
509: 2024/04/24(水)23:07 ID:vygCixOx(12/12) AAS
G_とL_を結ぶ線分が欠落していた(G_,L_を結ぶ線分と対角線との交点がE_)ので追加。

画像リンク[gif]:i.imgur.com
画像リンク[png]:i.imgur.com
510: 2024/04/24(水)23:40 ID:WaAwBZF7(1) AAS
微分で求められるdy/dx=傾きと言うのは
Xがlim→0の究極に動かない状態での
一瞬の「気配」のようなものですよね?
デルタxが決まらないと2点間の傾きが
決まらないから実効ある数値を取ることは
ないですよね?
511
(2): 498 2024/04/25(木)00:24 ID:6S2C/7uf(1/5) AAS
>>502
 AB, EF' → Q
とおき、対角線の分割比を
 AE:EE':E'C = α:1:α,
 BF:FF':F'D = β:1:β,
とする。
 AB = AQ + QH + HB = (α+1+β) QH,
 HB = βQH = {β/(α+1+β)} AB,
 BC = BG + GL' + L'C = (β+1+α) GL',
 BG = βGL' = {β/(β+1+α)} BC,
省3
512: 2024/04/25(木)00:54 ID:zlRFLPXQ(1/6) AAS
平行線l,mのl上にA,B,C, m上にX,ZがA→B→C,Z→Xが同じ向きならXZの内分点Yを

 AB:BC = XY:YZ

ととれる
---------------
長方形の重心をOとし一辺上にA,B,Cをこの順に取り対辺上にO対称にA'B'C'をとる
ABの内分点DをAD:DB = A'B':B'C'ととり
B'C'の内分点EをB'E':E'C' = AB:BCととる
このとき
BD = B'E'
513: 2024/04/25(木)01:45 ID:o78PVtly(1) AAS
三次方程式 x^3-sx^2+tx-u=0が、
0以上1以下の範囲に三つの解(重解含む)をもつための条件は、
どうなりますか教えてください。
514: 2024/04/25(木)01:57 ID:zlRFLPXQ(2/6) AAS
discriminant≧0
f(x) = x^3 + sx^2 + tx + uの全ての係数≧0
g(x) = (x+1)^3 - s(x+1)^2 + t(x+1) - uの全ての係数≧0
515
(1): 2024/04/25(木)03:07 ID:6S2C/7uf(2/5) AAS
・極値(停留値を含む)をもつ
 f '(x) = 3xx−2sx+t = 0 が2実解をもつ
 D_2 = ss−3t ≧ 0,
 α = {s−√(ss-3t)}/3,
 β = {s+√(ss-3t)}/3,

・3実解(重解を含む)をもつ
 D_3 =−f(α)f(β)
  = (1/27)^2・{4(ss-3t)^3−(2s^3-9st+27u)^2}
  = (1/27){(st)^2 +18stu−4(s^3)u−4t^3−27uu}
  ≧ 0,
省6
516
(1): 2024/04/25(木)06:08 ID:N1Wqmr3J(1/2) AAS
>>486
ご助言と、改訂コードの投稿ありがとうございました。
517: 2024/04/25(木)06:13 ID:N1Wqmr3J(2/2) AAS
WolframにはRのswitchに相当するWhichという条件分岐があることを知りました。
ちなみにRのwhichはTRUEになるindexを返す関数。
他の人のコードを読むのは勉強になります。

ありがとうございました。
518: 2024/04/25(木)06:34 ID:KToaGxfb(1/2) AAS
>>516
お前尿瓶だろ
519
(1): 2024/04/25(木)07:28 ID:JTmgmSn6(1/3) AAS
>>511
ありがとう
NJ // BD
はどうして?
520
(1): 2024/04/25(木)07:33 ID:PiWgohuV(1/2) AAS
>>484
複素点 a, b, c, dでa,b や c,dが
2直線を形成しない座標であったり、平行なときを場合分けして
a,bを結ぶ直線とc,dを結ぶ直線の交点を返す関数を修正。

intsect[a_,b_,c_,d_] :=(
If[(a-b)(c-d)==0,Return["Not two lines."]];
;
a1=Re[a] ; a2=Im[a];
b1=Re[b] ; b2=Im[b];
c1=Re[c] ; c2=Im[c];
省27
521: 2024/04/25(木)08:15 ID:zlRFLPXQ(3/6) AAS
p,q,r が実ならTFAE
(1) p,q,r ≧ 0
(2) p+q+r,qr+rp+pr,pqr ≧ 0
Suppose (2) ∧ not (1)
WMA p≧q≧r
Then we have
p≧0≧q≧r, p≧-(q+r)
Then
pq + pr ≦ -(q+r)^2
∴ pq + pr + qr ≦ -q^2+qr-p^2 ≦ -(q-r)^2 - qr ≦0
省1
522: 2024/04/25(木)08:45 ID:JTmgmSn6(2/3) AAS
>>519
メネラウスか
たしかにこれでDJ:JC=2:1となるので
反対側も同様にしてAK:KB=2:1の点を取れるということね
お見事です
523: 2024/04/25(木)09:47 ID:6t9+fbxx(1/2) AAS
この定積分が解けません
よろしくお願いいたします

∫[0,1] {√(1-√x)}/{√(1+x)} dx
1-
あと 479 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.019s