ガロア第一論文と乗数イデアル他関連資料スレ18 (445レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
230(2): 暇人 06/28(土)08:42 ID:4S+Arcik(8/23) AAS
>>224
2. 必要性の証明(解が四則演算とべき根で表せる ⇒ ガロア群が可解群)
設定
f(x)∈K[x] の解が、( K ) の元を用いた四則演算とべき根で表せると仮定。
つまり、解は体 K に有限回のべき根の添加で得られる体 M
(すなわち、M=K(α1,α2,…,αk))であり、αi^ni∈K(α1,…,αi−1))
に含まれる。
L は f(x) の分裂体で、K⊆L⊆M。
証明のアイデア
べき根の添加で構成される体拡大は、ガロア群が可解群であるような拡大に対応する。
M/K のガロア群が可解群であれば、部分拡大 L/K のガロア群も可解群である(可解群の部分群および商群は可解)。
231(2): 暇人 06/28(土)08:43 ID:4S+Arcik(9/23) AAS
>>230
ステップ1:べき根添加のガロア群
各拡大 K(α1,…,αi)/K(α1,…,αi−1) は、αi^ni∈K(α1,…,αi−1) による拡大。
この拡大はクンマー拡大であり、ガロア群は巡回群(位数 ni のアーベル群)またはその部分群である(原始根が適切に含まれる場合)。
よって、M/K は一連の巡回拡大の合成であり、ガロア群 Gal(M/K) は巡回群の拡張として可解群である。
234(1): 暇人 06/28(土)08:47 ID:4S+Arcik(12/23) AAS
>>224
結論
十分性:>>225-229 ガロア群 Gal(L/K) が可解群ならば、解は四則演算とべき根で表せる。これは、正規系列に沿った巡回拡大がべき根の添加で構成できるため。
必要性:>>230-232 解が四則演算とべき根で表せるならば、ガロア群は可解群である。これは、べき根の添加による拡大のガロア群が可解であるため。
よって、定理が証明された。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.028s