純粋・応用数学・数学隣接分野(含むガロア理論)21 (392レス)
純粋・応用数学・数学隣接分野(含むガロア理論)21 http://rio2016.5ch.net/test/read.cgi/math/1753002417/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
113: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/26(土) 10:06:12.07 ID:w9PY0JQs >>111 追加 ZFCが urelement(下記) を持たない 集合論であることは、しばしば 看過される 日常の集合論は、urelementを常用するので その感覚で ZFCの公理系を見ると イミフになる 上記 渕野(>>111)にも 同様の注意書きがある P8 "公理的集合論では,考察の対象はすべて集合である,と考える.したがっ て,以下で「ある x について ...」と言ったときには, 「ある集合 x につい て ...」という意味である." "集合論の公理系の一番最初の公理は,すべての集合はその要素の全体から 一意に決まることを主張する次のものである: (外延性公理)略. ZFC の他の公理は,すべて,「集合 x1, x2, . . . が与えられたとき,これらか ら ... という性質を持つ集合を作ることができる」というタイプの主張(存在公理)となっている.” これらを あたまに叩き込んでおきましょう! (^^ (参考) https://ja.wikipedia.org/wiki/%E5%8E%9F%E5%A7%8B%E5%85%83_(%E9%9B%86%E5%90%88%E8%AB%96) 原始元 (集合論) 原始元(英語: urelement ドイツ語の接頭辞 ur- は「原始的な」を意味する)とはオブジェクトであってそれ自身は集合でないが、集合の要素には成り得るもののことである。原始元は原子、アトムとも呼ばれることがある。また、日本語文献でも翻訳せずにurelementのまま用いられることも多い。原始元は空集合とは異なるものである 集合論における原始元 1908年のツェルメロ集合論の論文では原始元が含まれており、これが今日ZFAやZFCA (すなわちZFAに選択公理を加えたもの)と呼ばれるものの一種である。[1] 公理的集合論と密接に関連する文脈では、集合論は原始元を持たない理論で簡単にモデル化できるので、原始元は必要ないことがすぐにわかった。[2]したがって、公理的集合論ZFとZFCの標準的な説明では、原始元については触れていない(例外については、Suppes[3]を参照)。 集合論の公理化であって原始元を呼び出すものには、原始元付きクリプキ=プラテック集合論や、メンデルソンによって記述されたフォン・ノイマン=ベルナイス=ゲーデル集合論の変形がある。[4] 型理論では、型0のオブジェクトを原始元、アトムと呼ぶことができる。 新基礎集合論(NF)に原始元を追加してNFUを生成する試みは、驚くべき結果をもたらす。 略 http://rio2016.5ch.net/test/read.cgi/math/1753002417/113
115: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/26(土) 10:35:11.64 ID:w9PY0JQs >>113 追加 さて、その上で 日本語 https://ja.wikipedia.org/wiki/%E5%92%8C%E9%9B%86%E5%90%88%E3%81%AE%E5%85%AC%E7%90%86 和集合の公理 ↓ 仏語 https://fr.wikipedia.org/wiki/Axiome_de_la_r%C3%A9union Axiome de la réunion 和集合の公理 (google訳) 和公理(または「和公理」)は、ツェルメロ=フランケル集合論(ZF)の公理の一つである。これは、任意の集合Aに対して、集合Aの要素集合のすべての要素のみを含む集合が存在することを述べている(文脈は、すべての対象が集合であり、特にA が集合の集合である場合の理論の文脈であり、そうでない場合は明示的に指定する必要がある)。 この公理は、部分集合の公理と置換公理スキーム(ツェルメロ理論Zのペアの公理を証明するもので、したがって ZF では冗長)の助けを借りて、2 つの集合の和集合(両方の集合の要素を正確に含む)が集合であることを証明することを可能にします。 ↓ 英語 https://en.wikipedia.org/wiki/Axiom_of_union Axiom of union Relation to Pairing The axiom of union allows one to unpack a set of sets and thus create a flatter set. Together with the axiom of pairing, this implies that for any two sets, there is a set (called their union) that contains exactly the elements of the two sets. Relation to Intersection There is no corresponding axiom of intersection. If A is a nonempty set containing E, it is possible to form the intersection ∩A using the axiom schema of specification as ∩A={c∈E:∀D(D∈A⇒c∈D)}, so no separate axiom of intersection is necessary. (引用終り) <補足> 1)和集合の公理においても、 仏語 fr.wikipedia にあるように ”集合Aの要素集合のすべての要素のみを含む集合が存在することを述べている(文脈は、すべての対象が集合であり、特にA が集合の集合である場合の理論の文脈であり、そうでない場合は明示的に指定する必要がある)” ということ つまり、和集合の公理は 基本は集合Aが含む集合族(集合Aが無限の要素集合の族からなるとして*))の 要素集合の族の全ての要素を集めて、集合を作って良いということを主張する 2)また英語 en.wikipediaにあるように Relation to Pairing で、対の公理で 集合AとBとで ペア{A,B}を作って 和集合公理を使うと A∩B が出来ます 3)さらに、Relation to Intersection つまり 集合積との関係についても 上記の通りですが、 ひらたく言えば 集合Aが 集合族D1,D2,・・Di・・から成るとして つまり A={D1,D2,・・Di・・} として 集合族D1,D2,・・Di・・ の 集合積が、和集合の部分集合として 定義できるのです だから、”so no separate axiom of intersection is necessary”なのです 注*)もちろん、集合Aが有限の要素集合の族からなるとしても 同様です http://rio2016.5ch.net/test/read.cgi/math/1753002417/115
116: 132人目の素数さん [] 2025/07/26(土) 10:37:21.19 ID:gZ1LykHx >>113 何を言い出すかと思えばまったくトンチンカンなことをw >ZFCが urelement(下記)を持たない 集合論であることは、しばしば 看過される 誰も看過も否定もしてなくて草 ZFにおいてurelementの規定も無ければ存在公理も無いんだから当たり前じゃん 存在公理が無くてどうやって存在を証明すんだよw そもそもurelementが問題となる話題なんてぜんぜんしてないのに突然urelementを持ち出すのがまったくトンチンカン 君、頭だいじょうぶ? >"集合論の公理系の一番最初の公理は,すべての集合はその要素の全体から >一意に決まることを主張する次のものである: >(外延性公理)略. >ZFC の他の公理は,すべて,「集合 x1, x2, . . . が与えられたとき,これらか >ら ... という性質を持つ集合を作ることができる」というタイプの主張(存在公理)となっている. はい、大間違い。 反例:正則性公理、選択公理 君、集合論全然分かってないね。ズタボロだね。 http://rio2016.5ch.net/test/read.cgi/math/1753002417/116
118: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/26(土) 10:50:01.92 ID:w9PY0JQs >>116 踏みつけた ゴキブリが、まだ動いている 元気なやつだなw ;p) (引用開始) >"集合論の公理系の一番最初の公理は,すべての集合はその要素の全体から >一意に決まることを主張する次のものである: >(外延性公理)略. >ZFC の他の公理は,すべて,「集合 x1, x2, . . . が与えられたとき,これらか >ら ... という性質を持つ集合を作ることができる」というタイプの主張(存在公理)となっている. はい、大間違い。 反例:正則性公理、選択公理 (引用終り) ふっふ、ほっほ また、勘違いしているよ ゴキブリさんw 『ZFC の他の公理は,すべて,「集合 x1, x2, . . . が与えられたとき,これらか ら ... という性質を持つ集合を作ることができる」というタイプの主張(存在公理)となっている.』 の部分は、”渕野(>>111)にも 同様の注意書き”(>>113)だよ 引用元を書いてあるでしょ? そこに 頭突きしたら ”岩に頭突き”しているのと 同じだよ そこ ”テッパン”だよ 疑義があるならば、渕野先生にお手紙書いてあげてねwww ;p) http://rio2016.5ch.net/test/read.cgi/math/1753002417/118
126: 132人目の素数さん [] 2025/07/26(土) 12:11:21.36 ID:gZ1LykHx >>123 >ガウスも間違えた じゃ余計に >”渕野(>>111)にも 同様の注意書き”(>>113)だよ は何の根拠にもなってないじゃんw 馬鹿丸出しw http://rio2016.5ch.net/test/read.cgi/math/1753002417/126
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.017s