[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ17 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
651(2): 05/24(土)02:36 ID:yEGoU5Ff(1/8) AAS
>>650
>『そんなわけで、Lagrange resolventは面白いが、方程式を解くのに使える万能薬ではないのである』
>を 百回音読してかみしめてね
それは引用元のひとが完全な誤解をしているから。
>>645に書いたように、「アーベル群の指標」を使う必要がある。
S_4の正規部分群としてクラインの四元群Vというのがあり、S_4/V≅S_3.
S_3に対応する拡大は3次方程式の分解体と同値だろう。
省6
661(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 05/24(土)09:44 ID:qLdpZZ2V(1/9) AAS
>>651-654
ほんと、こいつら ガロアの代数方程式の理論を なんにも 分ってないなぁ〜!w
”さて、そこで ガロアは考えたのだ
ここの V = Aa+Bb+Cc+… は、今日では ガロア分解式と呼ばれるのです”
ここが一丁目一番地
当時、体の理論は無かったから ガロアは ガロア分解式V = Aa+Bb+Cc+… を
体の理論の代用として使った(後の数学者 デデキントたちが 体の理論に書き換えた)
省15
695(1): 05/24(土)21:00 ID:yEGoU5Ff(7/8) AAS
>>651
>「アーベル群の指標」を正しく用いれば、完璧に解けるはず。
古典理論の中に既に答えがあった。(高木貞治著『代数学講義』参照)
一般4次方程式の4つの根、x_1,x_2,x_3,x_4 に対して
S_4の正規部分群Vについての(一般化された)ラグランジュ分解式は
x_1+x_2+x_3+x_4, x_1+x_2-x_3-x_4, x_1-x_2+x_3-x_4, x_1-x_2-x_3+x_4
の4つ。最初の式はそれ自体対称式、残り3つはVの作用によって±1倍の違いが生じる。
省4
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s