[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ17 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ17 http://rio2016.5ch.net/test/read.cgi/math/1746597368/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
891: 132人目の素数さん [] 2025/05/27(火) 08:53:31.54 ID:ZAotU0sA >>888 >ふっふ、ほっほ >面白いね 面白いよ、君の詭弁は その強がり ワンパターンでもう飽きた(バッサリ) >”群指標”って、普通のガロア本だと >拡大体と 基礎体との関係についての群を導入するときに >ベクトル空間の理論を使っているだけでしょ? 「だけ」という言葉で何を言おうとしてるのかが意味不明だけど まあ、何も考えずに強がってるんだろうねえ ご苦労様 >『クンマー体のとこで・・ 1のr乗根 とか書いてあるけど』 >ってさ 笑える >クンマー体の定義知ってる? もちろん では質問 なぜ、クンマー体に1の原始r乗根を入れるんだい? >アルティン ガロア理論入門 (1974年) を持っているなら 話は早い >ラグランジュ分解式の記述を 探してくれたまえ!! 群指標のところに書いてある線型連立方程式の式あるじゃん あれ、何だと思ってんの? マジで http://rio2016.5ch.net/test/read.cgi/math/1746597368/891
892: 132人目の素数さん [] 2025/05/27(火) 09:11:34.82 ID:XG7xdh9L >>891 ワンパターンでないのは自分だけ? http://rio2016.5ch.net/test/read.cgi/math/1746597368/892
894: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/27(火) 10:16:37.33 ID:1caOziMJ >>891-893 ふっふ、ほっほ 面白いね 面白いよ、君(>>891)の詭弁は(ワンパターンだが w ;p) ID:XG7xdh9Lは、御大か 巡回ありがとうございます さて、下記を追加しておく アルティン ガロア理論入門の最後が、 作図問題への応用で締めくくられている ”例1.半径1の円に内接する正多角形を作図すること” ”2^2^k+1の形の数”、”素数3,5,17,257,65537” が、ガロア理論の 単なる一つの系として わずか 1ページ半で 終わる ガウスが DAで 数百ページを費やした ほぼ頂点の定理が、ラグランジュ分解式を使わずにね ;p) ついでに、角の三等分と デロス島の問題(立方体の倍の量の作図)も 扱っている アルティンは、ガロア理論の威力を示す好例だと思ったのだろう・・ (参考) ”ガロア理論入門 (1974年) 東京図書(株) (いまだと ちくま学芸文庫にあるらしい) アルティン (著), 寺田 文行 (翻訳)” より P108 ところが一方,作図とは関係なしに,その幾何学の問題自身から,作図し たい量ξ1,ξ2,...,ξtの性質をよみとることはできる.そして2つの体Eと Fの代数的な性貿を調べた結果,もし, (F/K)とか(E/K)が2のベキで なかったならば,上に述べたことから,コンパスと定規による作図は不可能 となるのである. 定理47.作図問題において,a1,a2,…,arを与えられた量,ξ1,ξ2,...,ξt を定めたい量とし, K = Q(a1,a2,…,ar)とする,このときξiがす べてK上代数的で,ξ1,ξ2,...,ξtを含むK の最小の正規拡大体が2 のベキ次の拡大体であることが,この作翻問題がコンパスと定規で解け るための必要十分な条件である. 証明 この条件が必要であることはすでに述べた。そこで(E/K)を2のベキである 以下略す P109 (これが最後のページの一つ前) 例1.半径1の円に内接する正多角形を作図すること Ptとしては2^2^k+1の形の数だけが問題になる.k=0,1,2,3,4とすると 素数3,5,17,257,65537が得られるk=5のときばこの数は641で割り きれる.現在のところ2^2^k+1の形の素数はこれ以上はみつかっていない. とにかく以上から,正多角形がコンパスと定規で作図できるのは,nが 2^2^k+1の形の素数piを用いてn= 2^ν p1p2 ・・・prの形をしているときであ る.正17角形の実際の作図は,なにがしかの書物でみることができる. 例2.角の三等分 略す 例3.デロス島の問題 アポロの神は,それまでの立方体状の祭壇 を,立方体状のままで倍の量にせよと要求された. そこにある立方体の一辺 の長さを1としてξ=2^(1/3)を作図しなければならない.これはK= Q, F= Q(2^(1/3))の場合である.ところがx^3−2はQで既約であるから (F/K)=3であり,そのような作図は不可能である. http://rio2016.5ch.net/test/read.cgi/math/1746597368/894
895: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/27(火) 10:38:53.32 ID:1caOziMJ >>891 追加 ふっふ、ほっほ 面白いね 面白いよ、君の詭弁は(ワンパターン ;p) >なぜ、クンマー体に1の原始r乗根を入れるんだい? >>アルティン ガロア理論入門 (1974年) を持っているなら 話は早い >>ラグランジュ分解式の記述を 探してくれたまえ!! >群指標のところに書いてある線型連立方程式の式あるじゃん >あれ、何だと思ってんの? マジで ??? あれれれ・・・??? 線型連立方程式から、”1の原始r乗根”が出るかね? 初耳なんですが・・w ;p) さすが、数学科1年で詰んだ・・ というか 「線型連立方程式から、”1の原始r乗根”が出る」と勘違いしているならば 数学科1年の”1日目”で 詰んだのだろうねww ;p) なお ”クンマー体に1の原始r乗根”については、下記 クンマー理論 ja.wikipediaを 百回音読して ;p) (参考) https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%B3%E3%83%9E%E3%83%BC%E7%90%86%E8%AB%96 クンマー理論 抽象代数学や数論で、クンマー理論(Kummer theory)は、基礎体の元の n 乗根の添加が関わっている、あるタイプの体の拡大を記述する理論である。クンマー理論は、元々は、1840年代にフェルマーの最終定理をエルンスト・クンマーが開拓しようとして発見した理論である。 クンマー理論の主な結果は、体の標数が n を割ってはいけないこと以外は体の性質に依存しておらず、従って、抽象代数学に属する。体 K の標数が n を割るときは、K の巡回拡大の理論はアルティン・シュライアー理論と呼ばれる。 クンマー理論は、例えば、類体論や一般のアーベル拡大を理解する上で、基本的である。クンマー理論は、充分に多くの1の根が存在するときは、巡回拡大は冪根をとるという操作によって理解できるという理論である。類体論における主要な難所は、1の余剰な根をなしで済ませる(つまり、より小さな体へと「降下」する)ことである。それはクンマー理論と比べて非常に難しい。 クンマー拡大 クンマー拡大(Kummer extension)とは、ある与えられた整数 n > 1 に対し次の条件を満たすような体の拡大 L/K のことを言う。 ・K は、n 個の異なる1のn乗根(つまり、X^(n−1) の根)を含む。 ・L/K はexponent n の可換ガロア群を持つ。 以下略す http://rio2016.5ch.net/test/read.cgi/math/1746597368/895
896: 132人目の素数さん [] 2025/05/27(火) 10:43:53.61 ID:QMLjka83 >>894 >ふっふ、ほっほ >面白いね 面白いよ >さて >>891には何も反論できず、いきなり話そらす1w >ガウスが DAで 数百ページを費やした ほぼ頂点の定理が、 >ラグランジュ分解式を使わずにね 具体的作図方法を全く抜きにして 定規とコンパスで作図できるかどうかだけ判断するなら もちろん、群論だけというか素因数分解だけで判断できるよ でも、どう作図すんの?っていわれたら 1の17乗根を平方根だけ使った表示が必要だよな それ、1はどうやって求めるつもり? ていうかさあ、ちゃんと群指標のところ読んでる? 全部理解して読んでる? 理解せずに結論だけつまみ食いしてるでしょ? そんな読み方じゃ数学分かんないよ http://rio2016.5ch.net/test/read.cgi/math/1746597368/896
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s