[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ17 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ17 http://rio2016.5ch.net/test/read.cgi/math/1746597368/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
888: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/27(火) 08:15:09.78 ID:mVXlvt9d >>877 (引用開始) あのさ、君、群指標って知ってる? 知らない、とはいわせないよ。 アルティンの本に定義が出てるんだから(笑) で、可解性を示すのに必要なクンマー体のとこで 指標バンバンつかってんだけど理解してる? 例えば 「Gが階数rの可換群のとき、指標のとる値は1のr乗根」 とか書いてあるけど、その意味わかってる? (引用終り) ふっふ、ほっほ 面白いね 面白いよ、君の詭弁はw ;p) アルティン ガロア理論入門 (1974年) を持っているんだ 多分ちくま でないやつをw 学生時代に買った? ”群指標”の該当箇所を 引用すると下記だ ”群指標”って、普通のガロア本だと 拡大体と 基礎体との関係についての群を導入するときに ベクトル空間の理論を使っているだけでしょ? (^^ なお、下記の[概要]の部分は、寺田文行先生が 読者のために 付記してくれている部分だよ 上記『クンマー体のとこで・・ 1のr乗根 とか書いてあるけど』 ってさ 笑えるw クンマー体の定義知ってる?w 下記 検索で 学習院大学 数学科 のPDFがあるよ 百回音読してねww 1のr乗根は、クンマー体の定義に使われているよ(当然だが) アルティン ガロア理論入門 (1974年) を持っているなら 話は早い ラグランジュ分解式の記述を 探してくれたまえ!! w ;p) (参考) ”ガロア理論入門 (1974年) 東京図書(株) (いまだと ちくま学芸文庫にあるらしい) アルティン (著), 寺田 文行 (翻訳)” より P37 6.群指標 [概要]ベクトル空間の理論を用いて定理13を導き,これを以下の理論の埜礎に するのがアルテインのガロア理論の特色である.定理13とは: “体Eから体E'の中への相異なるn個の同型写像σ1,σ2,…,σnがあり,E の部分体Kの要素aに対してはつねにσ1(a) = σ2(a)=…= σn(a)である とき,不等式(E/K)≧nがなりたつ” ということである.この節ではこの定理13を証明し,次にとくに体Eの部分 体をKとするとき,Kのすべての要素を不変にするEの自己同型写像の全体 が群になることを示す. Gを乗法群,Kを体とする.GからKの中への写像σが,Gの任意 の要素α,βに対して, σ(αβ)=σ(α)σ(β) を満たすとする.ここで 以下略 P39 定理13.体Eから体E'の中への異なる同型写像σ1,σ2,…,σnの不 変体をKとすると(E/K)≧nである。 証明 (E/K)<nとすると矛盾が導かれることを示そう.ベクトル空間としてのEのKの1組の生成系を 以下略 (google検索:クンマー体 より) §13. クンマー拡大 学習院大学 数学科 https://pc1.math.gakushuin.ac.jp › html-files › Alg2 PDF クンマー拡大. 以下において扱う体はすべて C の部分体とする. また,自然数 n に対して, ζn ∈ C を 1 の原始 n 乗根とする. すなわち,ζn ∈ C. × であって,その位 ... 4 ページ http://rio2016.5ch.net/test/read.cgi/math/1746597368/888
891: 132人目の素数さん [] 2025/05/27(火) 08:53:31.54 ID:ZAotU0sA >>888 >ふっふ、ほっほ >面白いね 面白いよ、君の詭弁は その強がり ワンパターンでもう飽きた(バッサリ) >”群指標”って、普通のガロア本だと >拡大体と 基礎体との関係についての群を導入するときに >ベクトル空間の理論を使っているだけでしょ? 「だけ」という言葉で何を言おうとしてるのかが意味不明だけど まあ、何も考えずに強がってるんだろうねえ ご苦労様 >『クンマー体のとこで・・ 1のr乗根 とか書いてあるけど』 >ってさ 笑える >クンマー体の定義知ってる? もちろん では質問 なぜ、クンマー体に1の原始r乗根を入れるんだい? >アルティン ガロア理論入門 (1974年) を持っているなら 話は早い >ラグランジュ分解式の記述を 探してくれたまえ!! 群指標のところに書いてある線型連立方程式の式あるじゃん あれ、何だと思ってんの? マジで http://rio2016.5ch.net/test/read.cgi/math/1746597368/891
925: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/27(火) 16:43:19.51 ID:1caOziMJ >>888 補足 >(google検索:クンマー体 より) >§13. クンマー拡大 >学習院大学 数学科 >https://pc1.math.gakushuin.ac.jp › html-files › Alg2 上記の 学習院大学 数学科 §13. クンマー拡大 の由来を調べると 下記の中野伸先生(学習院大学・理学部・数学科)ですね なお ”§13. クンマー拡大”を含む ”講義ノート 代数? 2024年度版(全体)”pdf があります (参考) https://pc1.math.gakushuin.ac.jp/~shin/index.html 中野伸(学習院大学・理学部・数学科) https://pc1.math.gakushuin.ac.jp/~shin/lecture.html 担当科目 より https://pc1.math.gakushuin.ac.jp/~shin/html-files/Alg2/2024/2024book.pdf 2024年度 代数II 講義ノート 代数? 2024年度版(全体) <因みに 冒頭のgoogle検索は、下記の 2022年度 の分でしたね> https://pc1.math.gakushuin.ac.jp/~shin/lecture2022.html 2022年度 https://pc1.math.gakushuin.ac.jp/~shin/html-files/Alg2/2022/2022book.pdf 代数? 2022年度版(全体)中野伸(学習院大学・理学部・数学科) 目次 前略 §10.ガロア拡大. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 §11.ガロア対応. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 §12.ガロア対応の例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 §13.クンマー拡大. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 §14.可解性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 §15.補遺. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 追加 https://researchmap.jp/shinbaka4141 中野 伸 ナカノ シン (Shin Nakano) 基本情報 所属学習院大学 理学部 数学科 教授 学位 理学博士(学習院大学) Doctor of Science(Gakushuin University) http://rio2016.5ch.net/test/read.cgi/math/1746597368/925
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s