[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ17 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ17 http://rio2016.5ch.net/test/read.cgi/math/1746597368/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
872: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/26(月) 21:06:48.13 ID:PcNaprFC >>841 >今、国会図書館デジタルコレクションで、 >倉田令二朗「ガロアを読む : 第1論文研究」 >を読んだけど、やっぱラグランジュの分解式 >がっつり使ってんじゃん(笑) あのさ 国会図書館デジタルコレクションで 下記の共立 ”アーベル ガロア 群と代数方程式 (現代数学の系譜 11)” 読めるか? 読めるなら、原論文読んでみて (アマゾン) アーベル ガロア 群と代数方程式 (現代数学の系譜 11) – 1975/4/20 N.H.ABEL (著), E.GALOIS (著), 守屋 美賀雄 訳・解説・ 正田 建次郎 監修・ 吉田 洋一 監修 共立出版 (引用終り) でな ラグランジュの分解式 が、補助方程式の一つであることは、否定していない 繰り返すが、”補助方程式の一つであることは、否定していない” そして、下記 三次方程式にしろ 四次方程式にしろ ラグランジュの分解式を使わない解法が いろいろ考えられている ガロア理論は、このような 個々の補助方程式を使う解法からの 天才的な発想の飛躍と転換があるのです! (^^ つまり、個別具体的な 種々の補助方程式の探求ではなく 抽象的に 方程式の根による体の拡大と、方程式のガロア群との関係と捉える視点 これこそが、ガロアの発想の飛躍なのです それに対して、ラグランジュの分解式などいう 些末な補助方程式論を ガロア理論に 縛り付けてはいけないのです!w ;p) (参考) https://ja.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B%E5%BC%8F 三次方程式 代数的解法 カルダノの方法 ビエトの解 ラグランジュの方法(これがラグランジュの分解式法) https://ja.wikipedia.org/wiki/%E5%9B%9B%E6%AC%A1%E6%96%B9%E7%A8%8B%E5%BC%8F 四次方程式 フェラーリの解法 デカルトの方法 オイラーの方法 ラグランジュの方法 ラグランジュの分解式 (Lagrange resolvent) http://rio2016.5ch.net/test/read.cgi/math/1746597368/872
873: 132人目の素数さん [] 2025/05/26(月) 21:10:44.21 ID:/ph39E0y >>872 >国会図書館デジタルコレクションで >”アーベル ガロア 群と代数方程式 (現代数学の系譜 11)” >読めるか? 残念ながら読めない http://rio2016.5ch.net/test/read.cgi/math/1746597368/873
874: 132人目の素数さん [] 2025/05/26(月) 21:12:07.28 ID:/ph39E0y >>872 >ラグランジュの分解式 が、補助方程式の一つであることは、否定していない >繰り返すが、”補助方程式の一つであることは、否定していない” 補助方程式ってなんだか分かって言ってる? http://rio2016.5ch.net/test/read.cgi/math/1746597368/874
875: 132人目の素数さん [] 2025/05/26(月) 21:20:09.79 ID:/ph39E0y >>872 >抽象的に 方程式の根による体の拡大と、 >方程式のガロア群との関係と捉える視点 >これこそが、ガロアの発想の飛躍なのです (1のべき根を追加した基礎体で) べき根による拡大と巡回拡大が対応するという 定理の証明にラグランジュ分解式使うんだが おまえ証明全然読んでないの? ていうか読んでも理解できなかったの? どっちにしてもそれじゃ数学の理解は無理よ 証明読まないなら数学勉強してないのと同じ 証明読んで理解できないなら数学勉強できてないのと同じ ああ、言い訳は無駄だからやめてね 数学勉強して分かりたいなら証明読んで理解してな それ以外の方法、ないから http://rio2016.5ch.net/test/read.cgi/math/1746597368/875
877: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/27(火) 00:00:20.47 ID:mVXlvt9d >>872 追加 あのさ 国会図書館デジタルコレクションで 下記の ”ガロア理論入門 (1974年) 東京図書(株) (いまだと ちくま学芸文庫にあるらしい(下記)) アルティン (著), 寺田 文行 (翻訳)” 読めないか? 早稲田大 寺田文行先生が、大学数学科のテキストで使ってきたものを訳したという で、いま手元の本を見ると、ラグランジュ分解式が出てこないのだが・・ww ;p) 確認できるかな? 索引にも目次にもないし、いま本文もざっと見たが、ラグランジュ分解式が出てこないよ だから、ラグランジュ分解式なしで、アルティン は ガロア理論を語っているようだ なお P105 より (引用開始) いまαi,αjをf(x)の相異なる2根とし,中間体K(αi,αj)を考察しよ う.この中間体に対応する部分群の要素τはαi,αjを動かさないので,2 つの不動点をもつことになる.よって上に示したことによって,τ=1でな ければならない.これは中間体K(αi,αj)が全体Eに一致することを意味 している.すなわち次が証明された. 定理46.素数次の既約方程式の群G が可解のとき,その分解体は その方程式の相異なる任意の2根を付加するだけで得られる。 (引用終り) となっているね (参考) (アマゾン) ガロア理論入門 (ちくま学芸文庫 ) 2010/4/7 エミール・アルティン (著), 寺田 文行 (翻訳) レビュー ksan 5つ星のうち5.0 さすがはロングセラーの名著だ。 2023年12月13日 原著は早稲田大学の数学科の講義の教科書として使われていて、それを訳したといういきさつが後書きに書かれている。 日本の大学で学ぶ代数学の目標の1つにガロア理論(米国では大学院で学ぶらしい)が挙げられる。 http://rio2016.5ch.net/test/read.cgi/math/1746597368/877
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s