[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ17 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ17 http://rio2016.5ch.net/test/read.cgi/math/1746597368/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
403: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/17(土) 09:44:02.60 ID:y2zepp9J >>399 >「実数から実数への連続関数は > すべての有理数の点の上での値だけで特定できる」 ふっふ、ほっほ 座興で、1問のみ答える (図に乗って 次々に質問攻めされそうなので 先回りw) いま、超能力を使って 某多変数関数論の名誉教授をエスパーした結果 答えはNoだと 追伸 因みに、Copilot さんに喰わせると Q 実数の連続関数は、すべての有理数の点の上での値だけで特定できるか? (注:念のためにいうが 下記は疑ってかかるように ;p) A いい質問ですね!結論から言うと、一般には特定できません。有理数上の値だけでは、実数全体での連続関数を一意に決めることができない場合があります。 理由は、有理数の集合は実数の中で「稠密」ですが、「稠密」であるだけでは十分ではないからです。例えば、次のような異なる2つの連続関数 ( f(x) ) と ( g(x) ) を考えます。 - ( f(x) ) と ( g(x) ) はすべての有理数 ( x ) 上で同じ値を持つ。 - しかし、ある無理数 ( x_0 ) では ( f(x_0) \neq g(x_0) ) となる。 このような関数の例があるため、連続関数を一意に決めるには、有理数だけでなく実数全体の情報が必要になるのです。 ただし、もし関数が 一様連続 であれば、有理数上の値から実数全体に拡張することが可能です(これは「稠密集合上での一様連続関数は一意に拡張できる」という性質によります)。 つまり: - 一般の連続関数の場合 → 有理数の情報だけでは決定できない。 - 一様連続関数の場合 → 有理数上の値だけで決定できる。 興味があれば、ワイエルシュトラスの近似定理 や 一様連続性と完備性 について調べると、より深く理解できると思います! こういう数学の議論って面白いですね。 http://rio2016.5ch.net/test/read.cgi/math/1746597368/403
410: 132人目の素数さん [] 2025/05/17(土) 09:57:56.54 ID:0l6LbjtF >>403 1.連続なだけではダメな例を具体的に示してごらん 2.一様連続ならOKな証明を示してごらん まあ大学1年で落ちこぼれた1には無理だからcopilotに聞いていいよ 1が新卒ならもうどんな企業にも雇われないだろうね 無能だからw http://rio2016.5ch.net/test/read.cgi/math/1746597368/410
414: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/17(土) 10:31:30.33 ID:y2zepp9J >>403 追加 google検索:定理 稠密集合上での一様連続関数は一意に拡張できる 一様連続関数を完備化した空間に拡張する はてなブログ Branched Evolution https://evolite.はてなブログ.com › entry 2020/08/16 — 距離空間上に定義された一様連続関数は完備化した空間上の一様連続関数に一意的に拡張できる. なお、藤岡敦 関西大学システム理工学部数学科 下記2011年 一橋大学時代か。これ 一橋大の講義か? もしそうなら 一橋大 おそるべし(^^; https://www2.itc.kansai-u.ac.jp/~afujioka/ 藤岡敦 関西大学システム理工学部数学科 https://www2.itc.kansai-u.ac.jp/~afujioka/hit/hit.html 2011年度 一橋大学時代のもの https://www2.itc.kansai-u.ac.jp/~afujioka/hit/ms/ms.html 2011年度冬学期「数理構造II」一橋大学時代のもの §1.Euclid 空間 10月7日分資料(10月7日修正版) §2.距離空間と位相空間 10月14日分資料(10月7日版) §3.連続写像 10月21日分資料(10月14日版) §4.実連続関数 10月28日分資料(10月21日版) §5.完備性 11月11日分資料(10月28日版) §6.Dini の定理 11月25日分資料(11月25日修正版) §7.Ascoli-Arzela の定理 12月2日分資料(11月25日版) §8.代数的構造 12月9日分資料(12月5日版) §9.Stone-Weierstrass の定理 12月16日分資料(12月9日版) §10.Urysohn の補題 1月6日分資料(12月16日版) §11.Tietze の拡張定理 1月20日分資料(1月6日版) §12.コンパクト開位相 1月27日分資料(1月25日修正版) https://www2.itc.kansai-u.ac.jp/~afujioka/hit/ms/111111ms.pdf 2011年11月11日数理構造II(藤岡敦担当)授業資料1 §5. 完備性 実連続関数全体の集合は完備な距離空間と同様の性質をもつ.まず, 距離空間の完備性について述べよう. さて, 実連続関数全体の集合について考えよう.定義 (X,O)を位相空間とし,C(X)の一様収束位相を考える. {fn}をC(X)の点列とする. 任意のε>0に対しあるN ∈Nが存在し,n≥Nならばfn∈B(fN;ε)となるとき,{fn}n∈Nを一様Cauchy列とよぶ. 距離空間の場合と同様に,C(X)の一様収束する点列は一様Cauchy列であることが分かる. また, Xがコンパクトなときは一様Cauchy列は距離空間(C(X),d)のCauchy列に他ならない. 次に示すようにC(X)は完備な距離空間と同様の性質をもつ. 定理 C(X)の一様Cauchy列は一様収束する. 証明 略す http://rio2016.5ch.net/test/read.cgi/math/1746597368/414
423: 132人目の素数さん [] 2025/05/17(土) 14:58:08.85 ID:0l6LbjtF >>419 >”開集合(位相空間論)”には、突っ込めないのか? >”岡の不定域イデアル & カルタンの層 の思想”には、突っ込めないのかな?? もっと基本的なことで突っ込むと >>403は、どうもおかしいので、 Copilotに尋ねたら、全然違うこといったぞw (引用始) Q.距離空間上の連続関数は稠密な部分集合上での値によって一意に決まる というけど、その証明は? A.この主張は、連続関数の稠密集合上での値がその関数全体を決定することを述べています。 つまり、ある距離空間 𝑋 上の連続関数 𝑓:𝑋→𝑅 が、稠密な部分集合 𝐷⊂𝑋 上で一致しているならば、全体でも一致するということです。 証明の概要: 仮定: 𝑋 を距離空間とし、連続関数 𝑓,𝑔:𝑋→𝑅 が稠密集合 𝐷 上で一致しているとする。 つまり、任意の 𝑥∈𝐷 について 𝑓(𝑥)=𝑔(𝑥) である。 目的: 全体 𝑋 において 𝑓(𝑥)=𝑔(𝑥) を示す。 連続性の利用: 関数 ℎ(𝑥)=𝑓(𝑥)−𝑔(𝑥) を定義すると、これは連続であり、稠密集合 𝐷 上で ℎ(𝑥)=0 となる。 稠密集合の性質: 𝐷 は稠密であるため、任意の点 𝑥∈𝑋 に対して、𝐷 内の点列 {𝑥𝑛} で 𝑥𝑛→𝑥 となるものが取れる。 連続性による極限: ℎ(𝑥𝑛)=0 より、ℎ(𝑥)=lim 𝑛→∞ ℎ(𝑥𝑛)=0 が成り立つ。 結論: 任意の 𝑥∈𝑋 について ℎ(𝑥)=0 が示されたので、すなわち 𝑓(𝑥)=𝑔(𝑥) が全体で成り立つ。 この結果は、特に多くの数学的応用において重要であり、 例えば関数解析の分野では稠密部分集合上での情報から 関数を一意に決定する理論的背景として利用されます。 さらに、実解析や近似理論などでも活用されます。 こうした性質がなぜ重要なのか、深掘りしてみるのも面白いですね。 (引用終) http://rio2016.5ch.net/test/read.cgi/math/1746597368/423
427: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/17(土) 16:12:10.68 ID:y2zepp9J >>423 (引用開始) Copilotに尋ねたら、全然違うこといったぞw (引用始) Q.距離空間上の連続関数は稠密な部分集合上での値によって一意に決まる というけど、その証明は? A.この主張は、連続関数の稠密集合上での値がその関数全体を決定することを述べています。 つまり、ある距離空間 𝑋 上の連続関数 𝑓:𝑋→𝑅 が、稠密な部分集合 𝐷⊂𝑋 上で一致しているならば、全体でも一致するということです。 証明の概要: 略す (引用終り) ふっふ、ほっほ おお! 君の Copilotは 優秀だな! ;p) たしかに、>>414より google検索:定理 稠密集合上での一様連続関数は一意に拡張できる 一様連続関数を完備化した空間に拡張する はてなブログ Branched Evolution https://evolite.はてなブログ.com › entry 2020/08/16 — 距離空間上に定義された一様連続関数は完備化した空間上の一様連続関数に一意的に拡張できる. これの 証明を読んでみると 中段に ”R の完備性より, {f(xn)} は収束し,その収束先は点列 {xn} のとり方によらないから, f^ を f^(x)=lim n→∞ f(xn) で定義できる. また,距離空間上の連続関数は稠密な部分集合上での値によって一意に決まるから,この拡張は一意的である.” とあるね なので、君の Copilotくんが正しそうだね(”一様連続”の条件を外せるかは ちょっと保留) >>403の "某多変数関数論の名誉教授をエスパー" は、ちょっとエスパー能力が足りなかったかな?w ;p) まあ、君にとっても良かったじゃないの? 君の Copilotくんが優秀で、教えて貰らえてねww ;p) http://rio2016.5ch.net/test/read.cgi/math/1746597368/427
433: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/05/17(土) 20:10:17.52 ID:y2zepp9J >>432 >>403の "某多変数関数論の名誉教授をエスパー" は、ちょっとエスパー能力が足りなかったか のでなく エスパー読み手の ”数学能力”の問題か (^^ →Uniform continuity →Cauchy continuity ここらで イマイチ 私の数学能力がついて行けてなかったんだね!w ;p) オチコボレのおサルさん>>10 勉強になって良かったね!!!ww ;p) http://rio2016.5ch.net/test/read.cgi/math/1746597368/433
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.042s