[‰ß‹ŽÛ¸Þ] ƒˆE‰ž—p”ŠwE”Šw—×Ú•ª–ìiŠÜ‚ÞƒKƒƒA—˜_j20 (1002Ú½)
㉺‘OŽŸ1-V
’Šo‰ðœ Ú½žx

‚±‚̽گÄނ͉ߋŽÛ¸Þ‘qŒÉ‚ÉŠi”[‚³‚ê‚Ä‚¢‚Ü‚·¡
ŽŸ½ÚŒŸõ —ðí¨ŽŸ½Ú žxí¨ŽŸ½Ú ‰ß‹ŽÛ¸ÞÒÆ­°
967
(1): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 07/20(“ú)19:36 ID:JxJPBISF(5/10) AAS
>>966 •â‘«

fr.wikipedia Axiom of infinityi–³ŒÀŒö—j‚æ‚è
hlet A be a set verifying Cl( A ) whose existence is ensured by the axiom of infinity. Then, the existence of the set ƒÖ is ensured by the axiom scheme of comprehension and its uniqueness by the axiom of extensionality , by defining ƒÖ as the intersection (therefore the smallest in the sense of inclusion) of all sets containing 0 and closed by successor ( A only intervenes to be able to define ƒÖ as a set, but ƒÖ does not depend on A ):
ƒÖ = { x ¸ A | Ent( x ) } ;h

‚Æ‚ ‚邿
hby defining ƒÖ as the intersection (therefore the smallest in the sense of inclusion) of all sets containing 0 and closed by successor ( A only intervenes to be able to define ƒÖ as a set, but ƒÖ does not depend on A )h
‚Æ‚ ‚邿
È6
975
(1): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 07/20(“ú)20:15 ID:JxJPBISF(8/10) AAS
>>968
>>‹L†¿ ‚ÍAŽg‚í‚È‚­‚Ä‚à‚¢‚¢‚̂Ȃç‚ÎA‚»‚Ì•û‚ª‚·‚Á‚«‚肵‚ĂȂ¢‚©‚ÈH‚— G‚j
>‚»‚ê‚Á‚Ä‚ ‚È‚½‚ÌŠ´‘z‚Å‚·‚æ‚ËH

‚Ó‚Á‚ÓA‚Ù‚Á‚Ù
ƒ‚¨‚ê‚ÌŠ´‘z„
‚Pj–½‘è P¨Q 2“_ŠÔ‚ðŒ‹‚Ô’¼ü Å’Z‹——£‚ª ‚µ‚΂µ‚ÎhƒGƒŒƒKƒ“ƒgh‚Ìꇂª‚¨‚¨‚¢
@>>967 fr.wikipedia Axiom of infinityi–³ŒÀŒö—j
È8
㉺‘OŽŸ1-VŠÖŽÊ”——õÝžx—ð
½Úî•ñ ÔÚ½’Šo ‰æ‘œÚ½’Šo —ð‚Ì–¢“Ç½Ú AA»ÑȲÙ

‚Ê‚±‚ÌŽè ‚Ê‚±TOP 0.032s