[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
349(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 05/18(日)15:02 ID:kvRHpDhK(8/10) AAS
つづき
2011年にはヴァンサン・ベファラ(フランス語版)と共同で、多数の2次元依存性パーコレーション模型に対する臨界点を決定する公式を与えた[1]。
2019年、ヴァンサン・タシオン(Vincent Tassion)とアラン・レウフィ(Aran Raoufi)と共同で、系が臨界点の直下と直上である場合の格子における連結成分のサイズに関する結果を公表した。3人は、臨界点の下では格子の連結成分に頂点が2つある確率は分離距離とともに指数関数的に減衰し、臨界点の上でも類似の結果が成立し、また臨界点の上ではサイズが無限になる連結成分が存在することを示した。
デュミニル=コパンと共同研究者は、「鋭敏性(sharpness)」と名付けたこの特性を、解析学と計算機科学を用いて証明した[1]。
デュミニル=コパンはまた、臨界点自体での相転移の性質、そして様々な状況下で相転移は連続的か非連続的か、についてもポッツ模型(英語版)の場合を中心に、より深く明らかにした[1]。
デュミニル=コパンは2次元の依存性パーコレーション模型における共形不変性(英語版)について研究している。
デュミニル=コパンはこの対称性の存在を証明することで、模型についての多大な情報が導かれるだろうと述べた[1]。
省8
352(1): 05/18(日)16:31 ID:dHKV9stj(4/4) AAS
>>346-351
フィールズ賞受賞者のエピソードばかりコピペする、気分はいつまでも高校生の素人
ああ、青い
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s