[過去ログ]
純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
純粋・応用数学・数学隣接分野(含むガロア理論)20 http://rio2016.5ch.net/test/read.cgi/math/1745503590/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
874: 132人目の素数さん [] 2025/07/11(金) 08:13:44.78 ID:8K5yfa8l Informally と intersection が同一文内にある。だから∩を使った構成は間違い。 ↑ だからの前後がまったく繋がらない。論理的に破綻している。 現代数学の系譜 雑談は何か発言するとき、発言しようとする内容が論理的におかしくないか確認する癖を付けた方が良い。 口から出まかせはダメ、ぜったい http://rio2016.5ch.net/test/read.cgi/math/1745503590/874
920: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/19(土) 15:34:03.80 ID:jT6bEcWg >>874 戻る >Informally と intersection が同一文内にある。だから∩を使った構成は間違い。 えーと >>867 より再録 >>852-853より https://en.wikipedia.org/wiki/Axiom_of_infinity Axiom of infinity Extracting the natural numbers from the infinite set Φ(x) be the formula that says "x is inductive"; i.e. Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))). Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set W such that ∀x(x∈W↔∀I(Φ(I)→x∈I)). (*) For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification. Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set W={x∈I:∀J(Φ(J)→x∈J)} – i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if x∈W, then x is in every inductive set, and if x is in every inductive set, it is in particular in I, so it must also be in W. For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element x is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set W′ that satisfied (*) we would have that W′⊆W since W is inductive, and W⊆W′since W′is inductive. Thus W=W′. Let ω denote this unique element. This definition is convenient because the principle of induction immediately follows: If I⊆ω is inductive, then also ω⊆I, so that I=ω.■ (引用終り) 1)”Informally, what we will do is take the intersection of all inductive sets.” intersection:共通部分 英: intersection(下記)ね 2)で、これ ”Informally”とあるよね。つまり、 ”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”>>727 は、”Informally”なんだよ ここを勘違いした人が ja.wikipediaに >>847の”ペアノの公理”を 書いたんじゃないの? 3)さて、Formallyには ”Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set W={x∈I:∀J(Φ(J)→x∈J)} – i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set.” だよね。ここに、”∩”は 使われない (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1745503590/920
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.045s