[過去ログ]
純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
純粋・応用数学・数学隣接分野(含むガロア理論)20 http://rio2016.5ch.net/test/read.cgi/math/1745503590/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
493: 132人目の素数さん [] 2025/06/09(月) 10:26:09.53 ID:ISVAs415 Haslinger, Friedrich (2014). The d-bar Neumann Problem and Schrödinger Operators. Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-031535-6. http://rio2016.5ch.net/test/read.cgi/math/1745503590/493
494: 132人目の素数さん [] 2025/06/09(月) 12:50:47.47 ID:n21sjwUN >>493 ID:ISVAs415 は、御大か 巡回ありがとうございます。 下記ですね en.wikipedia に、pdfのリンクがあって、全文読めますね (参考) https://en.wikipedia.org/wiki/DBAR_problem DBAR problem The DBAR problem is of key importance in the theory of integrable systems, Schrödinger operators and generalizes the Riemann–Hilbert problem.[1][2][3] References [2]Haslinger, Friedrich (2014). The d-bar Neumann Problem and Schrödinger Operators. Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-031535-6. PDF https://www.mat.univie.ac.at/~has/dbar/dbar1.pdf Preface The rst chapters contain a discussion of Bergman spaces and of the solution operator to @ restricted to holomorphic L2 -functions in one complex variable, pointing out that the Bergman kernel of the associated Hilbert space of holomorphic functions plays an important role. The next chapter contains a detailed account of the application of the @-methods to Schr odinger operators, Pauli and Dirac operators and to Witten-Laplacians. In this way one obtains a rather general basic estimate, from which one gets H ormander's L2 -estimates for the solution of the CauchyRiemann equation together with results on related weighted spaces of entire functions, such as that these spaces are in nite-dimensional if the eigenvalues of the Levi-matrix of the weight function show a certain behavior at in nity. In addition, it is pointed out that some L2 -estimates for @ can be interpreted in the sense of a general Brascamp-Lieb inequality. Contents Preface iii 1. Bergman spaces 2 2. The canonical solution operator to @ restricted to spaces of holomorphic functions 10 3. Spectral properties of the canonical solution operator to @ 21 4. The @-complex 33 5. The weighted @-complex 50 6. The twisted @-complex 58 7. Applications 62 8. Schr odinger operators 69 9. Compactness 74 10. The @-Neumann operator and commutators of the Bergman projection and multiplication operators. 85 https://www.mat.univie.ac.at/~has/ Friedrich Haslinger Faculty of Mathematics University of Vienna Research interests d-bar Neumann problem Hardy and Bergman spaces in several complex variables Bergman and Szegö kernels Spectral analysis of Schrödinger operators http://rio2016.5ch.net/test/read.cgi/math/1745503590/494
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s