[‰ß‹ŽÛ¸Þ] ƒˆE‰ž—p”ŠwE”Šw—×Ú•ª–ìiŠÜ‚ÞƒKƒƒA—˜_j20 (1002Ú½)
㉺‘OŽŸ1-V
’Šo‰ðœ •KŽ€Áª¯¶°(–{‰Æ) (‚×) Ž©ID Ú½žx ‚ ‚Ú[‚ñ
‚±‚̽گÄނ͉ߋŽÛ¸Þ‘qŒÉ‚ÉŠi”[‚³‚ê‚Ä‚¢‚Ü‚·¡
ŽŸ½ÚŒŸõ —ðí¨ŽŸ½Ú žxí¨ŽŸ½Ú ‰ß‹ŽÛ¸ÞÒÆ°
ØÛ°ÄÞ‹K§‚Å‚·¡10•ª‚قǂʼn𜂷‚é‚̂Ť‘¼‚ÌÌÞ׳»Þ‚Ö”ð“‚Ä‚‚¾‚³‚¢¡
852(3): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 07/10(–Ø)07:08 ID:J4CWtGen(1/3) AAS
>>848-851
‚Ó‚Á‚ÓA‚Ù‚Á‚Ù
‚à‚¤‹l‚ñ‚¾‚Ì‚©H‚— G‚j
@>>727‚æ‚èĘ^
>h¿{x¼A|{}¸xÈÍy[y¸x¨y¾{y}¸x]}h
‚±‚ÌŽ®‚ÍA‰º‹Lija.ipediaj‚̃yƒAƒm‚ÌŒö— Ž©‘R”‚ÌW‡˜_“I\¬ ‚ÌŽ®‚¾‚ª
ã‹L‚Ì’Ê‚èA¿‚ÌIterated binary operation ‚̈Ӗ¡‚ª•s–¾Šmi‚±‚Ìà–¾‚ð‹‚ß‚ç‚ê‚邯‹l‚܂邾‚낤j
È19
853(6): Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 07/10(–Ø)07:09 ID:J4CWtGen(2/3) AAS
‚‚«
Alternative method
An alternative method is the following. Let
ƒ³(x) be the formula that says "x is inductive"; i.e.
ƒ³(x)=(∅¸xÈÍy(y¸x¨(y¾{y}¸x))).
Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set W such that
Íx(x¸W↔ÍI(ƒ³(I)¨x¸I)). (*)
È35
872: Œ»‘㔊w‚ÌŒn•ˆ ŽG’k ŸyH25M02vWFhP 07/10(–Ø)20:53 ID:J4CWtGen(3/3) AAS
>>838-840
ID:ulVaLxmW‚ÍA‚¨‚Á‚¿‚á‚ñ‚©‚ÈH
‚¨Œ³‹C‚»‚¤‚łȂɂæ‚è‚Å‚·B
㉺‘OŽŸ1-V‘ŠÖŽÊ”——õÝžx—ð
½Úî•ñ ÔÚ½’Šo ‰æ‘œÚ½’Šo —ð‚Ì–¢“Ç½Ú AA»ÑȲÙ
‚Ê‚±‚ÌŽè ‚Ê‚±TOP 0.036s