[過去ログ] 高校数学の質問スレ Part434 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
883
(4): 2024/05/06(月)09:33 ID:HTvZ5yNF(1) AAS
一辺の長さが1の正三角形ABCの内部に点Pをとり、∠APB=120°となるようにする。
PのABに関する対称点をQとするとき、QA+QB+QCの取りうる値の範囲を求めよ。
889
(1): 2024/05/06(月)10:46 ID:xxhQy/YG(12/23) AAS
>>883
Rによる数値解

> f(max,TRUE)
[1] 2.309401
> min=optimise(f,c(-150/180*pi,-30/180*pi),maximum=FALSE)$minimum
> f(min,TRUE)
[1] 2.000026
893: 2024/05/06(月)11:26 ID:xxhQy/YG(15/23) AAS
>>883
一辺の長さが1の正三角形ABCの内部に点Pをとり、∠APB=120°となるようにする。
PのABに関する対称点をQとするとき、QA+QB+QCの取りうる値の範囲を求めよ。

Microsoftのcopilotに入力した結果
>このようにして、QA+QB+QCの取りうる値の範囲は、[QA + QB + QC = AP + BP + PC = 1 + 2 + \sqrt{3} = 3 + \sqrt{3}] です。

ChatGPTに入力した結果
省3
921
(1): 2024/05/06(月)21:41 ID:pOat3wNb(3/3) AAS
>>883
 △ABCの外接円の中心をOとする。半径 R=1/√3,
 A (R/2, 1/2)
 B (R/2, −1/2)
 C (−R, 0)

題意より ?AQB ≡ ?APB,
∴ ∠AQB = ∠APB = 120° = 180°−∠C,
省11
922: イナ ◆/7jUdUKiSM 2024/05/07(火)02:22 ID:7yMMsxnQ(1) AAS
>>852
>>883
maxQC=(√3/2)×(4/3)=2√3/3
maxQA=maxQB=(√3/2)×(2/3)=√3/3
max(QA+QB+QC)=√3/3+√3/3+2√3/3=4√3/3
min(QA+QB+QC)=0+1+1=2
∴2≦QA+QB+QC≦4√3/3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.028s