[過去ログ] 高校数学の質問スレ Part434 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
681(3): 2024/04/29(月)12:29 ID:a8YGSOSe(2/7) AAS
問題は >>676 のとおり。
a+b+c = s,
abc = u,
とおくと
0 ≦ u ≦ (s/3)^3, (0≦s≦2)
s−2 ≦ u ≦ (s/3)^3, (2≦s≦3)
528: 2024/04/25(木)14:00 ID:KToaGxfb(2/2) AAS
>>520
687:卵の名無しさん (JP 0Hef-If86 [202.253.111.210]):2024/04/25(木) 13:57:43.89 ID:6CMGEqZoH
>>681
お前って日本語理解出来ないよな
考えがまとまらなくて会話出来ない
どう考えても統合失調症だよ
701(1): 676 2024/04/30(火)08:54 ID:CMYzy4AG(1/2) AAS
>>681 様。
grapesで点をプロットすると確かに仰せのようになりますようです。
ありがとうございます。
できましたら >>681 の結果がどのように導けるのか
教えて頂けますでしょうか。
<(_ _)>
714(2): 681 2024/04/30(火)15:21 ID:ElCKljKY(3/5) AAS
>>701
AM-GM不等式から u ≦ (s/3)^3,
u = (1-ab)(1-c) + (1-a)(1-b) + (s-2) ≧ s-2,
なので、これらは必要条件です。
一方、 (a, b, c) = (a, (s-a)/2, (s-a)/2) とすれば aについて連続で
a=s/3 のとき u = (s/3)^3,
0≦s≦2, a→0 のとき u→0,
省2
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.518s*