[過去ログ] 高校数学の質問スレ Part434 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
434
(1): 2024/04/23(火)03:46 ID:7Ack2Qhi(1/10) AAS
>>432
手順
(1) 長方形の対角線2本を曳く。
(2) 対角線の平行線を1本曳く。
(3) できた台形の対角線の交点と長方形の頂点を結ぶ。
  この線によって長方形の対辺が1:2に内分される。
  長方形が2つの長方形に分割される。
省2
435
(3): 2024/04/23(火)04:20 ID:7Ack2Qhi(2/10) AAS
>>434
長方形を ABCD とする。
(1) 対角線AC,BDの交点をX。とする。
  長方形の周上の点P と X。を結んだ半直線が再び長方形と交わる点
  をP~とする。
(2) AX。上に点E、BX。上に点Fをとる。
  EF と 辺BC の交点をG,
省12
448
(7): 435 2024/04/23(火)11:11 ID:7Ack2Qhi(3/10) AAS
>>446
E~ は 点X。に関してEと対称な点でした。スマン

作図方法は
EF, BC → G
EF, AD → L
GX。, AD → G~
LX。, BC → L~
省2
449: 2024/04/23(火)13:21 ID:7Ack2Qhi(4/10) AAS
>>447

 1 + √(1+x) = u,
とおくと
 x = (u-1)^2 − 1,
 dx = 2(u-1)du,
より
 ∫ √{1+√(1+x)} dx
省6
453
(3): 448 2024/04/23(火)15:38 ID:7Ack2Qhi(5/10) AAS
>>450
 GX。,CI → Xi
としました。
 GI // CX。
から 三角相等で
 △GIXi ≡ △X。CXi
∴ BXi は GIの中点、CX。の中点を通ります。
省2
454
(1): 448 2024/04/23(火)15:56 ID:7Ack2Qhi(6/10) AAS
>>453 の補足
 CX。の中点をMとすれば
 (BMの傾き) = (CD/4)/(3BC/4) = (1/3)(CD/BC) = (1/3)(BDの傾き)

>>450
長方形の周上あるいは対角線上の点ならば簡単ですね。その他は、、、

本問は、対角線の平行線が描ければ、あとは何とかなりますって (?)
455: 448 2024/04/23(火)16:08 ID:7Ack2Qhi(7/10) AAS
>>453 の補足
 △GIXi ∽ △X。CXi
なので…
もう少し補足が必要である。。。
461
(1): 448 2024/04/23(火)21:26 ID:7Ack2Qhi(8/10) AAS
>>450
 直線は (周との交点を利用すれば) 反転できるので、
 その点を通る直線を2本曳けば良さげ

>>457
 中点は 定規だけでは難しい鴨
 
464
(3): 2024/04/23(火)22:06 ID:7Ack2Qhi(9/10) AAS
>>456
 ppq = 12*12*17 + 1 = 2449 = 31*79,
∴ (p, q) = (1, 2449)
465
(1): 2024/04/23(火)22:39 ID:7Ack2Qhi(10/10) AAS
>>458
 いいね✌
 P と P_ は 無くてもいいかな。
 E~ の作図 >>448 はあった方がいいよね。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.031s