[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ3 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ3 http://rio2016.5ch.net/test/read.cgi/math/1680684665/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
199: 132人目の素数さん [] 2023/04/17(月) 08:27:05.70 ID:sO/6RdBI >>192 >今年の数学セミナー4月号 >「数学者を目指す」 佐野 岳人 >P22 >古田幹雄先生のところで、修士から博士へ >いい話ですね 滑らかな 4次元多様体におけるポアンカレ予想は、まだ解かれていない 古田幹雄先生が、部分的な結果を出したという記事を読んだことがある 今回の佐野岳人氏の記事は、それをさらに一歩進める結果だ それが、面白いと思った 頑張って、4次元多様体におけるポアンカレ予想の解決までいくと、すばらしいですよね! https://ja.wikipedia.org/wiki/4%E6%AC%A1%E5%85%83%E5%A4%9A%E6%A7%98%E4%BD%93 4次元多様体 滑らかな 4次元多様体 フィンツシェル (Fintushel) とスターン (Stern) は、手術を使い、多くの滑らかな多様体の上で、互いに異なる大きな数の滑らかな構造をどのように構成するかを示し(任意の整数係数多項式をインデックスとする)、サイバーグ・ウィッテン不変量を使い、滑らかな構造は異なっていることを示した。これらの結果は、単連結でコンパクトな滑らかな 4次元多様体の分類は非常に複雑であることを意味している。現在、この分類が妥当であるというもっともらしい予想はない(いくつかの早い段階の予想は、すべての単連結な滑らかな 4次元多様体は、代数曲面、あるいは、シンプレクティック多様体の向きを保つ連結和かもしれないという予想があったが、否定された)。 4次元での特別な現象 多くとも次元 3 以下の低次元の方法により証明できる多様体に関しての基本定理がいくつかあり、少なくとも次元が 5 以上の高次元の全く異なる方法もいくつかあるが、しかし、それらは 4次元では誤りとなる。ここにいくつかの例を挙げる。 ・記事低次元トポロジーの中の 4次元でのその他の特別な現象に掲げてある例。 https://ja.wikipedia.org/wiki/%E4%BD%8E%E6%AC%A1%E5%85%83%E3%83%88%E3%83%9D%E3%83%AD%E3%82%B8%E3%83%BC 低次元トポロジー http://rio2016.5ch.net/test/read.cgi/math/1680684665/199
200: 132人目の素数さん [] 2023/04/17(月) 08:28:58.43 ID:sO/6RdBI >>199 訂正 頑張って、4次元多様体におけるポアンカレ予想の解決までいくと、すばらしいですよね! ↓ 頑張って、滑らかな4次元多様体におけるポアンカレ予想の解決までいくと、すばらしいですよね! 分かると思うが http://rio2016.5ch.net/test/read.cgi/math/1680684665/200
207: 132人目の素数さん [] 2023/04/17(月) 13:18:16.77 ID:Pi/h2IHq >>202 >非可算個の異種R^4の表現法でも示してくれないか? 取りあえず下記でも なお、「m <= 2n(従って次元は多くとも |符号| の 10/8 倍である)とすると、古田幹雄は滑らかな構造が存在しないことを証明した(Furuta 2001)」にご注目 (20年経って 佐野岳人氏登場>>199) (参考) https://ja.wikipedia.org/wiki/4%E6%AC%A1%E5%85%83%E5%A4%9A%E6%A7%98%E4%BD%93 4次元多様体 滑らかな 4次元多様体 ・交叉形式が不定値で、偶であると、・・ m <= 2n(従って次元は多くとも |符号| の 10/8 倍である)とすると、古田幹雄は滑らかな構造が存在しないことを証明した(Furuta 2001)。このことは 10/8 と 11/8 間にギャップがあり、そこでの答えは未解決である。 対照的に、向き付けされた 4次元多様体上の滑らかな構造を分類する第二の問題はほとんど分かっていない。 ドナルドソンは、ドルガチェフ曲面(英語版)のような、単連結でコンパクトな 4次元多様体が存在し、可算無限個の異なる滑らかな構造が存在することを示した。R4 上には非可算無限個の異なる滑らかな構造が存在する。エキゾチック R4を参照。 https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%AD%E3%82%BE%E3%83%81%E3%83%83%E3%82%AF_R4 エキゾチック R4 https://en.wikipedia.org/wiki/Exotic_R4 Exotic R^4 In mathematics, an exotic R^4 is a differentiable manifold that is homeomorphic (i.e. shape preserving) but not diffeomorphic (i.e. non smooth) to the Euclidean space R^4. The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds.[1][2] There is a continuum of non-diffeomorphic differentiable structures of R^4, as was shown first by Clifford Taubes.[3] つづく http://rio2016.5ch.net/test/read.cgi/math/1680684665/207
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s