[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
68(4): 2022/10/25(火)11:59 ID:JXoOrGqY(3/5) AAS
>>55 補足
(引用開始)
さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある
「R^N/~ の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/~ の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」
さらに、過去スレでは引用しなかったが、続いて下記も引用する
省16
69(1): 2022/10/25(火)12:00 ID:JXoOrGqY(4/5) AAS
>>68
つづき
ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。
古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 L^2、自乗総和可能数列の空間 l^2、超関数からなるソボレフ空間 H^s、正則関数の成すハーディ空間 H^2 などが挙げられる。
ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。
より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。
ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。
省9
71: 2022/10/25(火)12:14 ID:Hjv2Tos8(2/14) AAS
>>68
時枝戦略不成立は諦めたのかい?
そこつついても無駄だと忠告してあげたのに日本語読めなかった?
じゃ国語からやり直しだね
73(1): 2022/10/25(火)13:16 ID:hGu9Ao9O(1/6) AAS
>>68
>7)「R^N/〜 の切断は非可測になる」には同意だが、”R^N 空間に定義する測度”をまず論じないと、数学的には無意味ですよね!ww
R^N には標準的な一様分布は存在しないが、[0,1]^N なら一様分布が存在する。
よって、[0,1]^N を使えばよい。これでも時枝記事の不思議さは失われない。
そして、使用する確率空間を全て明示したのが前スレ>>581-583である。
もちろん、>581-583では [0,1]^N 上の一様分布を用いている。
2chスレ:math
省5
176(3): 2022/10/28(金)17:01 ID:PyYxVCuK(3/3) AAS
>>172
>多項式環 R[x] 上には標準的な無作為抽出がそもそも存在しない。
>従って、無作為抽出でなければ確率論でないのならば、
>R[x] 上で確率論を論じることそのものが不可能ということになる。
その通りですよ
例えば、複素数係数の多項式環 R[x] は、無限次元線形空間になる>>32-33
しかし、無限次元線形空間には、そのままでは計量が入らないよね
省8
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s