[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
440(6): 2022/11/01(火)08:06 ID:+emxAWt1(1/6) AAS
>>438
(引用開始)
μ_N の正体をより具体的に書くと、μ_N は次のように特徴づけられる:
任意の n≧1 と任意の A_1,A_2,…,A_n∈F_1 に対して、
A_1×A_2×…×A_n×[0,1]×[0,1]×[0,1]×… (← 残りは全て [0,1] が可算無限個並んでいる)
という集合の測度が μ_1(A_1)μ_1(A_2)…μ_1(A_n) で与えられるような測度が μ_N である。
すなわち、上記の集合に対して
省19
442(2): 2022/11/01(火)08:19 ID:5C0+Brs7(2/2) AAS
>>440
438は単なる積測度の定義
数学科の学生なら必修
箱入り無数目とは無関係の基本
446: 2022/11/01(火)12:11 ID:sIOgpcGr(11/28) AAS
R の各元のことは rectangle と呼ばれる。日本語では柱状集合とかシリンダーとか呼ばれる。
先頭の有限個しか弄らず、残りの無限個は全て Ω_n のまま弄らないのだから、
いかにも「 rectangle, 柱状集合, シリンダー」といったイメージである。
ちなみに、最終目標が([0,1]^N, F_N, μ_N)の場合には
(Ω_n, S_n, P_n)=([0,1], F_1, μ_1) (∀n≧1) を適用するのだから、対応する Π[n=1〜∞]A_n は
Π[n=1〜∞]A_n = A_1×A_2×…×A_k×[0,1]×[0,1]×[0,1]×… (← これ以降は [0,1] だけが並ぶ)
というものである。スレ主はこの集合に対して「コルモゴロフの確率公理を満たすか?」(>>440)
省2
450: 2022/11/01(火)12:15 ID:sIOgpcGr(15/28) AAS
要するに、写像 P:R → [0,1] を、任意の k≧1 と任意の A_i∈S_i (1≦i≦k) に対して
P ( A_1×A_2×…×A_k×Ω_{k+1}×Ω_{k+2}×Ω_{k+2}×… ) := P_1(A_1)…P_k(A_k)
として定義しているわけである。
最終目標が([0,1]^N,F_N,μ_N)の場合には (Ω_n, S_n, P_n)=([0,1], F_1, μ_1) (∀n≧1)
を適用するのだから、その場合には、任意の k≧1 と任意の A_1,…,A_k∈F_1 に対して
μ_N(A_1×A_2×…×A_k×[0,1]×[0,1]×[0,1]×…) := μ_1(A_1)…μ_1(A_k)
省3
456: 2022/11/01(火)12:26 ID:sIOgpcGr(21/28) AAS
>>440
>1)この確率測度μ_N は、あんたのオリジナル?
> それとも、先行文献ある? 先行文献あるなら示して欲しい
スレ主、可算無限直積 確率空間を全く知らないことが露呈。
コルモゴロフの確率論がどうこうと講釈を垂れるくせに、
当の本人はこんなことも理解してないという有様。
確率論にはマニアックな分野も存在するが、これは基礎中の基礎である。
省2
457: 2022/11/01(火)12:26 ID:sIOgpcGr(22/28) AAS
>>440
>2)数学(特に圏論)ではよくあるが、「存在すれば一意」という
> しかし、問題は存在するかどうか(測度の性質を満たす?)だろ?
存在する。確率論の基礎。それが分かってない時点で話にならない。
>4)”A_1×A_2×…×A_n×[0,1]×[0,1]×[0,1]×… (← 残りは全て [0,1] が可算無限個並んでいる)”
> のところ、時枝トリック類似に見えるけどw
> つまり、先頭に有限部分で決定番号100個 d1〜d100を含む部分,残りに無限のしっぽ
省4
472: 2022/11/01(火)18:36 ID:V+0RD7zD(2/2) AAS
>>471
>>440 の発言の後で
>”もしまだなら、”a sequence of independent random variables”は時枝記事を解明する重要キーワードだから、覚えておいてね”
という発言のなんという空しいことよ(笑)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s