[過去ログ] スレタイ 箱入り無数目を語る部屋4 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
375(3): 2022/10/31(月)14:40 ID:V6kL7bYX(5/47) AAS
一般に、測度空間 (X,F,m)が与えられたとき、その完備化を (X,F_w,m_w) と書くことにする。
補題:(X_i,F_i,m_i) (i=1,2)は有限測度空間で、(X,F,m)はその積空間とする。よって、
X=X_1×X_2, F = ( {A_1×A_2|A_i∈F_i} から生成される最小のσ集合体 ), m=(m_1とm_2の積測度)
である。このとき、次が成り立つ。
(1) A∈F を任意に取るとき、任意の x_1∈X_1 に対して、A の x_1 での断面 A_{x_1} は
A_{x_1}∈F_2 を満たす。すなわち、A が可測なら、任意の x_1∈X_1 に対して断面 A_{x_1} は可測である。
省7
380(1): 2022/10/31(月)14:49 ID:V6kL7bYX(10/47) AAS
A は可測だと仮定する。すなわち、A∈F だと仮定する。
(Ω,F,P) は2つの確率空間 ([0,1]^N, F_N, μ_N) と (I, G, η) の積空間を
完備化したものである(>>293)から、>>375の補題により、
・ η.a.e.i∈I s.t. A の i における断面 A_i は A_i∈F_{Nw} を満たす
ということになる。よって、あるゼロ集合 M∈G が存在して、
・ ∀i∈I−M s.t. A の i における断面 A_i は A_i∈F_{Nw} を満たす
省4
382(3): 2022/10/31(月)14:58 ID:V6kL7bYX(12/47) AAS
確率空間 ([0,1]^N,F_N,μ_N) を n 個用意して積を取った空間が (Y_n,E_n,α_n) なのだったが、
積空間の基本的性質により、(Y_{n−1},E_{n−1},α_{n−1}) と ([0,1]^N,F_N,μ_N) の積空間は
(Y_n,E_n,α_n) になる。(Y,E,α)=(Y_100,E_100,α_100) だったから、
(Y_99,E_99,α_99) と ([0,1]^N,F_N,μ_N) の積空間が (Y,E,α) ということになる。
B∈E_w だったから、>>375の補題により、α_99.a.e.z=(z^{0},z^{1},…,z^{98})∈Y_99 に対して、
B の z での断面 B_z は B_z∈F_{Nw} を満たす。すなわち、あるゼロ集合 M∈E_99 が存在して、
任意の z∈Y_99−M に対して、B の z での断面 B_z は B_z∈F_{Nw} を満たす。
省8
423: 2022/10/31(月)23:14 ID:V6kL7bYX(43/47) AAS
さて、>>375-383の証明を修正しなければならない。>>382 の
>B∈E_w だったから、>>375の補題により、α_99.a.e.z=(z^{0},z^{1},…,z^{98})∈Y_99 に対して、
>B の z での断面 B_z は B_z∈F_{Nw} を満たす。すなわち、あるゼロ集合 M∈E_99 が存在して、
>任意の z∈Y_99−M に対して、B の z での断面 B_z は B_z∈F_{Nw} を満たす。
この部分までは、修正の必要はない。ここから先は、新しく証明を書き直す。
状況を整理しておくと、A が可測であるという仮定のもとで、
B = { (y^{0},y^{1},…,y^{99})∈Y|d(y^{99})≦max{d(y^{j})|0≦j≦98} }
省3
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s