[過去ログ]
スレタイ 箱入り無数目を語る部屋4 (1002レス)
スレタイ 箱入り無数目を語る部屋4 http://rio2016.5ch.net/test/read.cgi/math/1666352731/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
13: 132人目の素数さん [] 2022/10/22(土) 09:18:52.99 ID:vbwjrS8W >>8 補足 > 3)n→∞の極限を考える(非正則分布になる)、当りの確率1/n→0 <非正則分布についての補足> (参考) 箱入り無数目を語る部屋2 https://rio2016.5ch.net/test/read.cgi/math/1629325917/834 より https://ai-trend.jp/basic-study/bayes/improper_prior/ AVILEN Inc 2020/04/14 非正則事前分布とは??完全なる無情報事前分布? ベイズ統計 ライター:y0he1 非正則な分布とは?一様分布との比較 非正則な分布とは、一様分布の範囲を無限に広げた分布のことです。 非正則分布は確率分布ではない!? 上で説明した非正則な分布ですが、よく見てみてください。確率の和が1ではありません https://kuboweb.github.io/-kubo/log/2010/img05/BayesianInference/chapter6.pdf Link and Barker (2010) 輪読@北海道大学 Part1. 第 6 章 Prior 1 Chapter 6. Prior 2010/5/29 (Sat.) 飯島勇人† P8 6.2.2 Improper priors 一様事前分布は、パラメータが有限の範囲を持つ時に、適切と考えられる値が特に存在しないと きに有効である。この考えを無限に拡張することはよいように思われるが、無限の範囲を持つ一様 分布は不可能である。improper prior(非正則事前分布)という考えを導入する必要がある。 (引用終り) 要するに、非正則分布は、例えば、一様分布の範囲を無限に広げた分布である(一様事前分布) 範囲が無限であっても、下記の正規分布のように、指数関数的に減衰する場合は、積分は発散せず、正当に扱える 類似で、裾の重い分布がある 分布の裾が、xの-1乗より早く減衰すれば、積分は発散しない (積分 ∫x=1~∞ x^-1 dx が発散して∞になることは、よく知られている) つづく http://rio2016.5ch.net/test/read.cgi/math/1666352731/13
444: 132人目の素数さん [sage] 2022/11/01(火) 12:07:36.99 ID:sIOgpcGr まず、可算無限個の確率空間 (Ω_n, S_n, P_n) (n=1,2,3,…) を用意する。 それぞれの (Ω_n, S_n, P_n) は任意でよくて、n ごとに全く異なる確率空間でも構わない。 そして、これらの確率空間の可算無限直積として得られる確率空間 (Ω,S,P) を作っているのが 上記のリンク先である。もちろん、Ω=Π[n=1〜∞]Ω_n である。つまり Ω = Π[n=1〜∞]Ω_n = Ω_1×Ω_2×Ω_3×Ω_4×… である。最終目標が([0,1]^N,F_N,μ_N)の場合には (Ω_n, S_n, P_n)=([0,1], F_1, μ_1) (∀n≧1) なので、 Ω = Π[n=1〜∞]Ω_n = [0,1]×[0,1]×[0,1]×[0,1]×… (=[0,1]^N) である。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/444
516: 132人目の素数さん [] 2022/11/02(水) 12:21:00.99 ID:i6iI4IYN >>515 つづき 上記は、有限次のn 次元ユークリッド空間 Rの測度で 矩形の測度を定めている これで、n→∞を考えると 1)もし、全て(bn - an)>1 ならば、mes(I) →∞に発散する 2)一方、全て(bn - an)<1 ならば、mes(I) →0に潰れる >>236の議論に戻ると 1)多項式環の無限次元線形空間が、ある種ユークリッド空間(有限次元)の無限次元化と考えられること (引用終り) で、>>33 柳田伸太郎 名古屋大 ”形式的冪級数の空間 K[[x]] (例 1.3.8) から I = N を添字集合とする直積 K^N =Πi∈N K への写像 ψ: K[[x]] -→ K^N, Σi=0~∞ fix^i -→ (fi)i∈N は同型写像 (証明は問題 2.3.2). 例 1.3.3 より K^N は数列空間だから, 形式的冪級数の空間 K[[x]] と数列空間 K^N は同じ線形空間と見なせる事が分かる.” から、 時枝氏>>1のR^N上の可算非可算を論じるためには (それは、形式的冪級数の空間 K[[x]]を多項式空間 K[x]で割ったK[[x]]/K[x] を考えることだが>>32-33) そもそも、無限次元の上記 矩形の測度 をどう定義するかから、始めなければならない 上記のように、n→∞で発散したり、0に潰れる測度のままで良いのかどうか? の吟味から必要になるってことです http://rio2016.5ch.net/test/read.cgi/math/1666352731/516
521: 132人目の素数さん [sage] 2022/11/02(水) 12:49:14.99 ID:VMeEIdTW >>519 この仕組みは、もともとの時枝記事の設定(出題が固定)の場合は明確に機能する。 つまり、時枝記事は正しい。 また、出題する実数列を「有限種類」にした場合でも機能する。 たとえば、3種類の実数列 s_1, s_2, s_3 があって、 ・ s_1 から出力される100個の決定番号には単独最大値が存在しない ・ s_2 から出力される100個の決定番号には単独最大値が存在しない ・ s_3 から出力される100個の決定番号には単独最大値が存在する とする。出題者が s_1 を出題した回では、出題者は必ず負けることに注意せよ。 出題者が s_2 を出題した回でも、出題者は必ず負けることに注意せよ。 ・ 出題者が s_1, s_2 の2種類から毎回ランダムに選んで出題したとき、 回答者の勝率は 1 である。 ・ 出題者が s_1, s_2, s_3 の3種類から毎回ランダムに選んで出題したとき、 回答者の勝率は (2/3) * 1 + (1/3) * 99/100 以上である。 このように、回答者の勝率はゼロにならない。 http://rio2016.5ch.net/test/read.cgi/math/1666352731/521
554: 132人目の素数さん [sage] 2022/11/03(木) 09:18:21.99 ID:8HW9bynv >>526 次に524 2)の反例 定理2 各項が1>a_n>0を満たすとき Π(n=1~∞)(1-a_n)>0 ⇔ Σ(n=1~∞)a_n<∞ 証明 級数が発散する場合は Π(n=1~N)(1-a_n) < exp(-Σ(n=1~N)a_n) であるから、部分積が0に収束することにより、無限乗積も0に「発散」する 級数が収束するときは、部分和が減少列であるから、下から押さえられることを示せばよい。 あるNが存在して a_n < 1/2, n ≧ N となる。このとき次が成り立つ。 1/(1 + 2 a_n)≦ 1 − a_n, n ≧ N 級数が収束することから 2?(n=1~N)a_n=?(n=1~N)2a_n も収束し したがって ∏(n = 1~∞)(1 + 2 a_n) も収束する。 ゆえに部分積には下限∏(n = 1~∞)1/(1 + 2 a_n)があり、 (0より大きな値に)収束する。 ま、上記の証明をトレースしなくても、例えば a_nがみな正で、Σ(n=1~∞)a_nが有限なら 1>exp(-a_n)だが、その無限乗積exp(-Σ(n=1~∞)a_n)は有限値 はい、二回死んだ!w 大学2年の微積分再履修も落第ね 🐎🦌 http://rio2016.5ch.net/test/read.cgi/math/1666352731/554
928: 132人目の素数さん [sage] 2022/11/07(月) 20:51:52.99 ID:K/UclYxR 草生すかばね http://rio2016.5ch.net/test/read.cgi/math/1666352731/928
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s